Institute of Computing Technology, Chinese Academy IR
Graph confidence intercalibration network for intracranial aneurysm lesion instance segmentation in DSA | |
Ye, Haili1,2; Mo, Yancheng1,2; Tang, Chen3,4; Liao, Mingqian1,2; Zhang, Xiaoqing1,2,5,6; Dai, Limeng7; Li, Baihua8; Liu, Jiang1,2,3,4 | |
2025-04-01 | |
发表期刊 | DISPLAYS
![]() |
ISSN | 0141-9382 |
卷号 | 87页码:12 |
摘要 | Intracranial aneurysm (IA) lesion segmentation is significant for its treatment and prognosis. Although exiting deep network-based instance methods have good IA lesion segmentation results based on digital subtraction angiography (DSA) images, they still face great challenges with instance confidence bias and imprecise boundary segmentation, which may negatively affect IA diagnosis. To tackle these problems, this paper proposes a novel graph confidence intercalibration network (GCINet) to automatically segment IA lesions from DSA images. To be specific, we design a graph confidence intercalibration (GCI) module to mitigate instance confidence bias by dynamically adjusting their confidence distributions. At the same time, we propose an edge space perception (ESP) module to correct ambiguous segmentation boundaries. Extensive experiments on a clinical IA-DSA and a publicly available LiTS dataset demonstrate that our GCINet outperforms state-of-the-art methods. Additionally, visual analysis and ablation studies are provided to verify the effectiveness of each module in GCINet. |
关键词 | Intracranial aneurysm Instance segmentation Graph confidence intercalibration Edge space perception module DSA image |
DOI | 10.1016/j.displa.2024.102929 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Leading Goose Program of Zhejiang[2023C03079] ; General Program of National Natural Science Foundation of China[82272086] |
WOS研究方向 | Computer Science ; Engineering ; Instruments & Instrumentation ; Optics |
WOS类目 | Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Instruments & Instrumentation ; Optics |
WOS记录号 | WOS:001390999400001 |
出版者 | ELSEVIER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/40777 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Zhang, Xiaoqing; Liu, Jiang |
作者单位 | 1.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China 3.Wenzhou Med Univ, Sch Ophthalmol & Optometry, Wenzhou 325027, Peoples R China 4.Wenzhou Med Univ, Eye Hosp, Wenzhou 325027, Peoples R China 5.Chinese Acad Sci, Shenzhen Inst Adv Technol, Ctr High Performance Comp, Shenzhen 518055, Peoples R China 6.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Intelligent Bioinformat, Shenzhen 518055, Peoples R China 7.Shenzhen Peoples Hosp, Neurosurg Dept, Shenzhen 518020, Peoples R China 8.Loughborough Univ, Dept Comp Sci, Loughborough LE11 3TU, England |
推荐引用方式 GB/T 7714 | Ye, Haili,Mo, Yancheng,Tang, Chen,et al. Graph confidence intercalibration network for intracranial aneurysm lesion instance segmentation in DSA[J]. DISPLAYS,2025,87:12. |
APA | Ye, Haili.,Mo, Yancheng.,Tang, Chen.,Liao, Mingqian.,Zhang, Xiaoqing.,...&Liu, Jiang.(2025).Graph confidence intercalibration network for intracranial aneurysm lesion instance segmentation in DSA.DISPLAYS,87,12. |
MLA | Ye, Haili,et al."Graph confidence intercalibration network for intracranial aneurysm lesion instance segmentation in DSA".DISPLAYS 87(2025):12. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论