CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Gradient-aware domain-invariant learning for domain generalization
Hou, Feng1,2; Zhang, Yao3; Liu, Yang1,2; Yuan, Jin4; Zhong, Cheng3; Zhang, Yang3; Shi, Zhongchao3; Fan, Jianping3; He, Zhiqiang1,2,5
2025-02-01
发表期刊MULTIMEDIA SYSTEMS
ISSN0942-4962
卷号31期号:1页码:15
摘要In realistic scenarios, the effectiveness of Deep Neural Networks is hindered by domain shift, where discrepancies between training (source) and testing (target) domains lead to poor generalization on previously unseen data. The Domain Generalization (DG) paradigm addresses this challenge by developing a general model that relies solely on source domains, aiming for robust performance in unknown domains. Despite the progress of prior augmentation-based methods by introducing more diversity based on the known distribution, DG still suffers from overfitting due to limited domain-specific information. Therefore, unlike prior DG methods that treat all parameters equally, we propose a Gradient-Aware Domain-Invariant Learning mechanism that adaptively recognizes and emphasizes domain-invariant parameters. Specifically, two novel models named Domain Decoupling and Combination and Domain-Invariance-Guided Backpropagation (DIGB) are introduced to first generate contrastive samples with the same domain-invariant features and then selectively prioritize parameters with unified optimization directions across contrastive sample pairs to enhance domain robustness. Additionally, a sparse version of DIGB achieves a trade-off between performance and efficiency. Our extensive experiments on various domain generalization benchmarks demonstrate that our proposed method achieves state-of-the-art performance with strong generalization capabilities.
关键词Domain shift Domain generalization Domain-invariant parameters Sparse
DOI10.1007/s00530-024-01613-4
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:001389241300003
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40773
专题中国科学院计算技术研究所期刊论文_英文
通讯作者He, Zhiqiang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Lenovo Res, AI Lab, Beijing, Peoples R China
4.Southeast Univ, Nanjing, Peoples R China
5.Lenovo Ltd, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Hou, Feng,Zhang, Yao,Liu, Yang,et al. Gradient-aware domain-invariant learning for domain generalization[J]. MULTIMEDIA SYSTEMS,2025,31(1):15.
APA Hou, Feng.,Zhang, Yao.,Liu, Yang.,Yuan, Jin.,Zhong, Cheng.,...&He, Zhiqiang.(2025).Gradient-aware domain-invariant learning for domain generalization.MULTIMEDIA SYSTEMS,31(1),15.
MLA Hou, Feng,et al."Gradient-aware domain-invariant learning for domain generalization".MULTIMEDIA SYSTEMS 31.1(2025):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hou, Feng]的文章
[Zhang, Yao]的文章
[Liu, Yang]的文章
百度学术
百度学术中相似的文章
[Hou, Feng]的文章
[Zhang, Yao]的文章
[Liu, Yang]的文章
必应学术
必应学术中相似的文章
[Hou, Feng]的文章
[Zhang, Yao]的文章
[Liu, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。