CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
From Limited Resources to Powerful Insights: Empowering Low-Cost Cameras for Efficient Retrospective Querying
Wen, Qiaodi1,2; Zhou, Jianer2; Chen, Ruitao1; Luo, Ziqi1; Tyson, Gareth3; Li, Weichao2; Wang, Jinfan4,5; Pan, Heng6; Xu, Zhiwei7,8
2025-02-01
发表期刊IEEE INTERNET OF THINGS JOURNAL
ISSN2327-4662
卷号12期号:3页码:2825-2837
摘要Uploading videos from low-cost cameras to the cloud for retrospective analysis presents challenges in privacy, network, and computation. To address these issues and achieve low latency, we propose READY, a novel client-cloud collaborative system. READY aims to enhance the quality of uploaded frames by selectively uploading only the frames relevant to queries. To achieve this, READY establishes an index during video capture, recording object categories and probabilities for each frame. READY adopts an innovative semi-supervised approach for frame indexing, wherein frames are indexed through a continuously updated feature distribution space constructed by k-nearest neighbors (KNN). This enables resource-constrained low-cost cameras to independently establish long-term frame indexes. Additionally, READY utilizes progressively improving operators (lightweight classification models) dispatched by the cloud to optimize the upload order of frames, prioritizing positive frames. By sharing the backbone of low-performance operators, high-performance operators can be efficiently executed, significantly enhancing the camera's frame processing capability. The established frame index also enables efficient multiple consecutive queries on different classes. Over 110 h of diverse queries across 11 videos, READY outperformed competing alternative designs by achieving an average response time of 67.8% and reducing the proportion of uploaded videos by an average of 79.8% (compared to CloudOnly).
关键词Cameras Videos Cloud computing Accuracy Nearest neighbor methods Costs Indexing Training Electronic mail Collaboration k-nearest neighbors (KNN) low-cost cameras retrospective queries video analytics
DOI10.1109/JIOT.2024.3480089
收录类别SCI
语种英语
资助项目Major Key Project of PCL[PCL2024Y02] ; Major Key Project of PCL[PCL2023AS1-5] ; Major Key Project of PCL[PCL2023AS1-3] ; Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region[NJYT23104] ; Basic Scientific Research Expenses Program of Universities directly under Inner Mongolia Autonomous Region[JY20220273] ; Basic Scientific Research Expenses Program of Universities directly under Inner Mongolia Autonomous Region[JY20240002]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001407270600034
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40765
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhou, Jianer
作者单位1.Southern Univ Sci & Technol, Shenzhen 518055, Peoples R China
2.Peng Cheng Lab, Shenzhen 518066, Peoples R China
3.Hong Kong Univ Sci & Technol Guangzhou, Guangzhou 511453, Peoples R China
4.Southern Univ Sci & Technol, Inst Future Networks, Shenzhen 518055, Peoples R China
5.Linkinsense Anhui Ltd, Hefei, Peoples R China
6.Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100045, Peoples R China
7.Haihe Lab Informat Technol Applicat Innovat, Tianjin 300459, Peoples R China
8.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wen, Qiaodi,Zhou, Jianer,Chen, Ruitao,et al. From Limited Resources to Powerful Insights: Empowering Low-Cost Cameras for Efficient Retrospective Querying[J]. IEEE INTERNET OF THINGS JOURNAL,2025,12(3):2825-2837.
APA Wen, Qiaodi.,Zhou, Jianer.,Chen, Ruitao.,Luo, Ziqi.,Tyson, Gareth.,...&Xu, Zhiwei.(2025).From Limited Resources to Powerful Insights: Empowering Low-Cost Cameras for Efficient Retrospective Querying.IEEE INTERNET OF THINGS JOURNAL,12(3),2825-2837.
MLA Wen, Qiaodi,et al."From Limited Resources to Powerful Insights: Empowering Low-Cost Cameras for Efficient Retrospective Querying".IEEE INTERNET OF THINGS JOURNAL 12.3(2025):2825-2837.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wen, Qiaodi]的文章
[Zhou, Jianer]的文章
[Chen, Ruitao]的文章
百度学术
百度学术中相似的文章
[Wen, Qiaodi]的文章
[Zhou, Jianer]的文章
[Chen, Ruitao]的文章
必应学术
必应学术中相似的文章
[Wen, Qiaodi]的文章
[Zhou, Jianer]的文章
[Chen, Ruitao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。