Institute of Computing Technology, Chinese Academy IR
UniFa: A unified feature hallucination framework for any-shot object detection | |
Nie, Hui; Wang, Ruiping1; Chen, Xilin | |
2025-03-01 | |
发表期刊 | PATTERN RECOGNITION LETTERS
![]() |
ISSN | 0167-8655 |
卷号 | 189页码:207-213 |
摘要 | Any-shot object detection seeks to simultaneously detect base (many-shot), few-shot and zero-shot categories. The primary challenge lies in insufficient visual data for rare (few-shot and zero-shot) categories, hindering effective training. Existing methods use visual feature generation to alleviate it, but the quality of the generated features is low and limited to zero-shot object detection task (i.e., only including zero-shot categories). This mainly arises from semantic information for feature generation trained on unimodal data lacking visual- awareness, and the significant distinctness of generated features across categories. To tackle these issues, we introduce the Unified Feature Hallucination (UniFa) framework, which generates high-quality features for two rare categories. Utilizing CLIP's text encoder, we transform category names into visual-aware semantic information for generating visual features, facilitating better visual-semantic alignment. A semantically blended feature enhancer is utilized to merge features from any two categories, producing denser and more realistic features. The effectiveness of our approach is confirmed through extensive experiments on MSCOCO datasets. |
关键词 | Any-shot object detection Feature hallucination Visual-aware semantic information |
DOI | 10.1016/j.patrec.2025.01.015 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2021ZD0111901] ; National Key R&D Program of China[2023YFF1105104] ; Natural Science Foundation of China[U21B2025] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:001424575900001 |
出版者 | ELSEVIER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/40737 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Wang, Ruiping |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Nie, Hui,Wang, Ruiping,Chen, Xilin. UniFa: A unified feature hallucination framework for any-shot object detection[J]. PATTERN RECOGNITION LETTERS,2025,189:207-213. |
APA | Nie, Hui,Wang, Ruiping,&Chen, Xilin.(2025).UniFa: A unified feature hallucination framework for any-shot object detection.PATTERN RECOGNITION LETTERS,189,207-213. |
MLA | Nie, Hui,et al."UniFa: A unified feature hallucination framework for any-shot object detection".PATTERN RECOGNITION LETTERS 189(2025):207-213. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论