CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Bridging the Gap between Transformer-Based Neural Networks and Tensor Networks for Quantum Chemistry
Kan, Bowen1,2; Tian, Yingqi1; Wu, Yangjun3; Zhang, Yunquan1; Shang, Honghui3
2025-03-02
发表期刊JOURNAL OF CHEMICAL THEORY AND COMPUTATION
ISSN1549-9618
页码14
摘要The neural network quantum state (NNQS) method has demonstrated promising results in ab initio quantum chemistry, achieving remarkable accuracy in molecular systems. However, efficient calculation of systems with large active spaces remains challenging. This study introduces a novel approach that bridges tensor network states with the transformer-based NNQS-Transformer (QiankunNet) to enhance accuracy and convergence for systems with relatively large active spaces. By transforming tensor network states into active space configuration interaction type wave functions, QiankunNet achieves accuracy surpassing both the pretraining density matrix renormalization group (DMRG) results and traditional coupled cluster methods, particularly in strongly correlated regimes. We investigate two configuration transformation methods: the sweep-based direct conversion (Conv.) method and the entanglement-driven genetic algorithm (EDGA) method, with Conv. showing superior efficiency. The effectiveness of this approach is validated on H2O with a large active space (10e, 24o) in the cc-pVDZ basis set, demonstrating an efficient routine between DMRG and QiankunNet and also offering a promising direction for advancing quantum state representation in complex molecular systems.
DOI10.1021/acs.jctc.4c01703
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[22403100] ; National Natural Science Foundation of China ; Supercomputing Center of the USTC
WOS研究方向Chemistry ; Physics
WOS类目Chemistry, Physical ; Physics, Atomic, Molecular & Chemical
WOS记录号WOS:001435305400001
出版者AMER CHEMICAL SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40699
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shang, Honghui
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.Univ Sci & Technol China, Key Lab Precis & Intelligent Chem, Hefei 230026, Peoples R China
推荐引用方式
GB/T 7714
Kan, Bowen,Tian, Yingqi,Wu, Yangjun,et al. Bridging the Gap between Transformer-Based Neural Networks and Tensor Networks for Quantum Chemistry[J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION,2025:14.
APA Kan, Bowen,Tian, Yingqi,Wu, Yangjun,Zhang, Yunquan,&Shang, Honghui.(2025).Bridging the Gap between Transformer-Based Neural Networks and Tensor Networks for Quantum Chemistry.JOURNAL OF CHEMICAL THEORY AND COMPUTATION,14.
MLA Kan, Bowen,et al."Bridging the Gap between Transformer-Based Neural Networks and Tensor Networks for Quantum Chemistry".JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2025):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kan, Bowen]的文章
[Tian, Yingqi]的文章
[Wu, Yangjun]的文章
百度学术
百度学术中相似的文章
[Kan, Bowen]的文章
[Tian, Yingqi]的文章
[Wu, Yangjun]的文章
必应学术
必应学术中相似的文章
[Kan, Bowen]的文章
[Tian, Yingqi]的文章
[Wu, Yangjun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。