CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Retriever-generator-verification: A novel approach to enhancing factual coherence in open-domain question answering
Sun, Shiqi2,3; Zhang, Kun4; Li, Jingyuan1; Yu, Min5; Hou, Kun1; Wang, Yuanzhuo2; Cheng, Xueqi2
2025-07-01
发表期刊INFORMATION PROCESSING & MANAGEMENT
ISSN0306-4573
卷号62期号:4页码:16
摘要In recent research on open-domain question answering (ODQA), significant advances have been achieved by merging document retrieval techniques with large language models (LLMs) to answer questions. However, current ODQA methods present two challenges: the introduction of noise during retrieval and granularity errors during generation. To address these challenges, we propose the Retriever-Generator-Verification (RGV) framework, which consists of the Evidence Document Generator (EDG), the Candidate Entities Generator (CEG), and the Candidate Subgraphs Validator and Ranker (CSVR). EDG combines retrieval and generative mechanisms to construct comprehensive reference documents, ensuring broad coverage of potential answers. CEG then extracts and expands multi-dimensional candidate answer entities from these reference documents, capturing finer-grained information. Finally, CSVR verifies the candidate subgraphs against external knowledge sources and ranks them based on relevance, refining the final answers to enhance their accuracy and reliability. By systematically integrating these components, the RGV framework improves the completeness of retrieved information while effectively mitigating noise during retrieval and granularity errors during generation, thereby enhancing the overall reliability of ODQA. We assessed the efficacy of our method on three widely used datasets, and the experimental results demonstrate that our method exhibits competitive performance in benchmark tests. Compared to the state-of-the-art method, our approach achieves a 2.3% improvement in F1 score on the WebQSP dataset and a 1.3% increase in Hits@1 on the CWQ dataset.
关键词Question answering Large language model Information retrieval In-context learning
DOI10.1016/j.ipm.2025.104147
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62172393] ; Key Research and Development Project of Henan Province[241111211900] ; Zhongyuanyingcai Program-Funded to Central Plains Science and Technology Innovation Leading Talent Program[204200510002]
WOS研究方向Computer Science ; Information Science & Library Science
WOS类目Computer Science, Information Systems ; Information Science & Library Science
WOS记录号WOS:001458884300001
出版者ELSEVIER SCI LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40663
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Jingyuan
作者单位1.Beijing Technol & Business Univ, Sch Comp & Artificial Intelligence, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab AI Safety, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Tencent Inc, Pattern Recognit Ctr, WeChat AI, Beijing, Peoples R China
5.Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Sun, Shiqi,Zhang, Kun,Li, Jingyuan,et al. Retriever-generator-verification: A novel approach to enhancing factual coherence in open-domain question answering[J]. INFORMATION PROCESSING & MANAGEMENT,2025,62(4):16.
APA Sun, Shiqi.,Zhang, Kun.,Li, Jingyuan.,Yu, Min.,Hou, Kun.,...&Cheng, Xueqi.(2025).Retriever-generator-verification: A novel approach to enhancing factual coherence in open-domain question answering.INFORMATION PROCESSING & MANAGEMENT,62(4),16.
MLA Sun, Shiqi,et al."Retriever-generator-verification: A novel approach to enhancing factual coherence in open-domain question answering".INFORMATION PROCESSING & MANAGEMENT 62.4(2025):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Shiqi]的文章
[Zhang, Kun]的文章
[Li, Jingyuan]的文章
百度学术
百度学术中相似的文章
[Sun, Shiqi]的文章
[Zhang, Kun]的文章
[Li, Jingyuan]的文章
必应学术
必应学术中相似的文章
[Sun, Shiqi]的文章
[Zhang, Kun]的文章
[Li, Jingyuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。