Institute of Computing Technology, Chinese Academy IR
DFU-E: A Dataflow Architecture for Edge DSP and AI Applications | |
Li, Wenming1,2; Fan, Zhihua1,2; Liu, Tianyu1,2; Wang, Zhen1,2; Wu, Haibin1,2; Wu, Meng1,2; Zhang, Kunming1,2; Liu, Yanhuan1,2; Sun, Ninghui1,2; Ye, Xiaochun1,2; Fan, Dongrui1,2 | |
2025-06-01 | |
发表期刊 | IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
![]() |
ISSN | 1045-9219 |
卷号 | 36期号:6页码:1100-1114 |
摘要 | Edge computing aims to enable swift, real-time data processing, analysis, and storage close to the data source. However, edge computing platforms are often constrained by limited processing power and efficiency. This paper presents DFU-E, a dataflow-based accelerator specifically designed to meet the demands of edge digital signal processing (DSP) and artificial intelligence (AI) applications. Our design addresses real-world requirements with three main innovations. First, to accommodate the diverse algorithms utilized at the edge, we propose a multi-layer dataflow mechanism capable of exploiting task-level, instruction block-level, instruction-level, and data-level parallelism. Second, we develop an edge dataflow architecture that includes a customized processing element (PE) array, memory, and on-chip network microarchitecture optimized for the multi-layer dataflow mechanism. Third, we design an edge dataflow software stack that enables automatic optimizations through operator fusion, dataflow graph mapping, and task scheduling. We utilize representative real-world DSP and AI applications for evaluation. Comparing with Nvidia's state-of-the-art edge computing processor, DFU-E achieves up to 1.42x geometric mean performance improvement and 1.27x energy efficiency improvement. |
关键词 | Artificial intelligence Hardware Edge computing Computer architecture Computational modeling Single instruction multiple data Energy efficiency Target recognition Radar polarimetry Real-time systems Dataflow architecture edge computing digital signal processing AI multi-layer dataflow mechanism |
DOI | 10.1109/TPDS.2025.3555329 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2023YFB4503500] ; Beijing Nova Program[20220484054] ; Beijing Nova Program[20230484420] ; Beijing Natural Science Foundation[L234078] ; CAS Project for Youth Innovation Promotion Association |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:001470409900005 |
出版者 | IEEE COMPUTER SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/40589 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Fan, Zhihua |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China 2.UCAS, Sch Comp Sci & Technol, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Wenming,Fan, Zhihua,Liu, Tianyu,et al. DFU-E: A Dataflow Architecture for Edge DSP and AI Applications[J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,2025,36(6):1100-1114. |
APA | Li, Wenming.,Fan, Zhihua.,Liu, Tianyu.,Wang, Zhen.,Wu, Haibin.,...&Fan, Dongrui.(2025).DFU-E: A Dataflow Architecture for Edge DSP and AI Applications.IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,36(6),1100-1114. |
MLA | Li, Wenming,et al."DFU-E: A Dataflow Architecture for Edge DSP and AI Applications".IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 36.6(2025):1100-1114. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论