CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DFU-E: A Dataflow Architecture for Edge DSP and AI Applications
Li, Wenming1,2; Fan, Zhihua1,2; Liu, Tianyu1,2; Wang, Zhen1,2; Wu, Haibin1,2; Wu, Meng1,2; Zhang, Kunming1,2; Liu, Yanhuan1,2; Sun, Ninghui1,2; Ye, Xiaochun1,2; Fan, Dongrui1,2
2025-06-01
发表期刊IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
ISSN1045-9219
卷号36期号:6页码:1100-1114
摘要Edge computing aims to enable swift, real-time data processing, analysis, and storage close to the data source. However, edge computing platforms are often constrained by limited processing power and efficiency. This paper presents DFU-E, a dataflow-based accelerator specifically designed to meet the demands of edge digital signal processing (DSP) and artificial intelligence (AI) applications. Our design addresses real-world requirements with three main innovations. First, to accommodate the diverse algorithms utilized at the edge, we propose a multi-layer dataflow mechanism capable of exploiting task-level, instruction block-level, instruction-level, and data-level parallelism. Second, we develop an edge dataflow architecture that includes a customized processing element (PE) array, memory, and on-chip network microarchitecture optimized for the multi-layer dataflow mechanism. Third, we design an edge dataflow software stack that enables automatic optimizations through operator fusion, dataflow graph mapping, and task scheduling. We utilize representative real-world DSP and AI applications for evaluation. Comparing with Nvidia's state-of-the-art edge computing processor, DFU-E achieves up to 1.42x geometric mean performance improvement and 1.27x energy efficiency improvement.
关键词Artificial intelligence Hardware Edge computing Computer architecture Computational modeling Single instruction multiple data Energy efficiency Target recognition Radar polarimetry Real-time systems Dataflow architecture edge computing digital signal processing AI multi-layer dataflow mechanism
DOI10.1109/TPDS.2025.3555329
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2023YFB4503500] ; Beijing Nova Program[20220484054] ; Beijing Nova Program[20230484420] ; Beijing Natural Science Foundation[L234078] ; CAS Project for Youth Innovation Promotion Association
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:001470409900005
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40589
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Fan, Zhihua
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
2.UCAS, Sch Comp Sci & Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Wenming,Fan, Zhihua,Liu, Tianyu,et al. DFU-E: A Dataflow Architecture for Edge DSP and AI Applications[J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,2025,36(6):1100-1114.
APA Li, Wenming.,Fan, Zhihua.,Liu, Tianyu.,Wang, Zhen.,Wu, Haibin.,...&Fan, Dongrui.(2025).DFU-E: A Dataflow Architecture for Edge DSP and AI Applications.IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,36(6),1100-1114.
MLA Li, Wenming,et al."DFU-E: A Dataflow Architecture for Edge DSP and AI Applications".IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 36.6(2025):1100-1114.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Wenming]的文章
[Fan, Zhihua]的文章
[Liu, Tianyu]的文章
百度学术
百度学术中相似的文章
[Li, Wenming]的文章
[Fan, Zhihua]的文章
[Liu, Tianyu]的文章
必应学术
必应学术中相似的文章
[Li, Wenming]的文章
[Fan, Zhihua]的文章
[Liu, Tianyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。