CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
An Improved Method for Single Tree Trunk Extraction Based on LiDAR Data
Xia, Jisheng1,2; Ma, Sunjie1,2; Luan, Guize3; Dong, Pinliang4; Geng, Rong5; Zou, Fuyan6; Yin, Junzhou1,7; Zhao, Zhifang1,2
2025-04-03
发表期刊REMOTE SENSING
卷号17期号:7页码:20
摘要Scanning forests with LiDAR is an efficient method for conducting forest resource surveys, including estimating tree diameter at breast height (DBH), canopy height, and segmenting individual trees. This study uses three-dimensional (3D) forest test data and point cloud data simulated by the Helios++ V1.3.0 software, and proposes a voxelized trunk extraction algorithm to determine the trunk location and the vertical structure of single tree trunks in forest areas. Firstly, the voxel-based shape recognition algorithm is used to extract the trunk structure of tree point clouds, then the random sample consensus (RANSAC) algorithm is used to solve the vertical structure connectivity problem of tree trunks generated by the above method, and the Alpha Shapes algorithm is selected among various point cloud surface reconstruction algorithms to reconstruct the surface of tree point clouds. Then, building on the tree surface model, a light projection scene is introduced to locate the tree trunk coordinates at different heights. Finally, the convex hull of the trunk bottom is solved by the Graham scanning method. Accuracy assessments show that the proposed single-tree extraction algorithm and the forest vertical structure recognition algorithm, when applied within the light projection scene, effectively delineate the regions where the vertical structure distribution of single tree trunks is inconsistent.
关键词LiDAR vertical structure of forest random sample consensus light projection scene
DOI10.3390/rs17071271
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China ; Open Project of Technology Innovation Center for Natural Ecosystem Carbon Sink[CS2023D01] ; Open Project of Technology Innovation Center for Natural Ecosystem Carbon Sink[KC-24248928] ; [42061038]
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001464298500001
出版者MDPI
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40579
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Geng, Rong
作者单位1.Yunnan Univ, Sch Earth Sci, Kunming 650500, Peoples R China
2.Yunnan Int Joint Lab China Laos Bangladesh Myanmar, Kunming 650500, Peoples R China
3.Yunnan Univ, Inst Int Rivers & Ecosecur, Kunming 650500, Peoples R China
4.Univ North Texas, Dept Geog & Environm, Denton, TX 76201 USA
5.Yunnan Ctr Geol Informat, Kunming 650051, Peoples R China
6.Minist Nat Resources, Technol Innovat Ctr Nat Ecosyst Carbon Sink, Kunming 650111, Peoples R China
7.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Xia, Jisheng,Ma, Sunjie,Luan, Guize,et al. An Improved Method for Single Tree Trunk Extraction Based on LiDAR Data[J]. REMOTE SENSING,2025,17(7):20.
APA Xia, Jisheng.,Ma, Sunjie.,Luan, Guize.,Dong, Pinliang.,Geng, Rong.,...&Zhao, Zhifang.(2025).An Improved Method for Single Tree Trunk Extraction Based on LiDAR Data.REMOTE SENSING,17(7),20.
MLA Xia, Jisheng,et al."An Improved Method for Single Tree Trunk Extraction Based on LiDAR Data".REMOTE SENSING 17.7(2025):20.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xia, Jisheng]的文章
[Ma, Sunjie]的文章
[Luan, Guize]的文章
百度学术
百度学术中相似的文章
[Xia, Jisheng]的文章
[Ma, Sunjie]的文章
[Luan, Guize]的文章
必应学术
必应学术中相似的文章
[Xia, Jisheng]的文章
[Ma, Sunjie]的文章
[Luan, Guize]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。