Institute of Computing Technology, Chinese Academy IR
Incorporating Ab Initio energy into threading approaches for protein structure prediction | |
Shao,Mingfu1; Wang,Sheng2; Wang,Chao1; Yuan,Xiongying1; Li,Shuai Cheng3; Zheng,Weimou2; Bu,Dongbo1 | |
2011-02-15 | |
发表期刊 | BMC Bioinformatics |
ISSN | 1471-2105 |
卷号 | 12期号:Suppl 1 |
摘要 | AbstractBackgroundNative structures of proteins are formed essentially due to the combining effects of local and distant (in the sense of sequence) interactions among residues. These interaction information are, explicitly or implicitly, encoded into the scoring function in protein structure prediction approaches—threading approaches usually measure an alignment in the sense that how well a sequence adopts an existing structure; while the energy functions in Ab Initio methods are designed to measure how likely a conformation is near-native. Encouraging progress has been observed in structure refinement where knowledge-based or physics-based potentials are designed to capture distant interactions. Thus, it is interesting to investigate whether distant interaction information captured by the Ab Initio energy function can be used to improve threading, especially for the weakly/distant homologous templates.ResultsIn this paper, we investigate the possibility to improve alignment-generating through incorporating distant interaction information into the alignment scoring function in a nontrivial approach. Specifically, the distant interaction information is introduced through employing an Ab Initio energy function to evaluate the “partial” decoy built from an alignment. Subsequently, a local search algorithm is utilized to optimize the scoring function.Experimental results demonstrate that with distant interaction items, the quality of generated alignments are improved on 68 out of 127 query-template pairs in Prosup benchmark. In addition, compared with state-to-art threading methods, our method performs better on alignment accuracy comparison.ConclusionsIncorporating Ab Initio energy functions into threading can greatly improve alignment accuracy. |
DOI | 10.1186/1471-2105-12-S1-S54 |
语种 | 英语 |
WOS记录号 | BMC:10.1186/1471-2105-12-S1-S54 |
出版者 | BioMed Central |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/4007 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Zheng,Weimou; Bu,Dongbo |
作者单位 | 1.Chinese Academy of Sciences; Institute of Computing Technology 2.Chinese Academy of Sciences; Institute of Theoretical Physics 3.International Computer Science Institute |
推荐引用方式 GB/T 7714 | Shao,Mingfu,Wang,Sheng,Wang,Chao,et al. Incorporating Ab Initio energy into threading approaches for protein structure prediction[J]. BMC Bioinformatics,2011,12(Suppl 1). |
APA | Shao,Mingfu.,Wang,Sheng.,Wang,Chao.,Yuan,Xiongying.,Li,Shuai Cheng.,...&Bu,Dongbo.(2011).Incorporating Ab Initio energy into threading approaches for protein structure prediction.BMC Bioinformatics,12(Suppl 1). |
MLA | Shao,Mingfu,et al."Incorporating Ab Initio energy into threading approaches for protein structure prediction".BMC Bioinformatics 12.Suppl 1(2011). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论