CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Online Spatio-Temporal Correlation-Based Federated Learning for Traffic Flow Forecasting
Liu, Qingxiang1,2; Sun, Sheng1; Liu, Min1,3; Wang, Yuwei1; Gao, Bo4
2024-07-31
发表期刊IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
ISSN1524-9050
页码13
摘要Traffic flow forecasting (TFF) is of great importance to the construction of Intelligent Transportation Systems. To mitigate communication burden and tackle with the problem of privacy leakage aroused by centralized forecasting methods, Federated Learning (FL) has been applied to TFF. However, existing FL-based approaches employ batch learning manner, which makes the pre-trained models inapplicable to subsequent traffic data, thus exhibiting subpar prediction performance. In this paper, we perform the first study of forecasting traffic flow adopting online learning manner in FL framework and then propose a novel prediction method named Online Spatio-Temporal Correlation-based Federated Learning (FedOSTC), aiming to guarantee performance gains regardless of traffic fluctuation. Specifically, clients employ Gated Recurrent Unit (GRU)-based encoders to obtain the internal temporal patterns inside traffic data sequences. Then, the central server evaluates spatial correlation among clients via Graph Attention Network (GAT), catering to the dynamic changes of spatial closeness caused by traffic fluctuation. Furthermore, to improve the generalization of the global model for upcoming traffic data, a period-aware aggregation mechanism is proposed to aggregate the local models which are optimized using Online Gradient Descent (OGD) algorithm at clients. We perform comprehensive experiments on two real-world datasets to validate the efficiency and effectiveness of our proposed method and the numerical results demonstrate the superiority of FedOSTC.
关键词Predictive models Forecasting Servers Correlation Data models Federated learning Adaptation models online learning spatio-temporal correlation traffic flow forecasting
DOI10.1109/TITS.2024.3429533
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2021YFB2900102] ; National Natural Science Foundation of China[62072436] ; National Natural Science Foundation of China[62202449]
WOS研究方向Engineering ; Transportation
WOS类目Engineering, Civil ; Engineering, Electrical & Electronic ; Transportation Science & Technology
WOS记录号WOS:001283752900001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39700
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Min
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.Zhongguancun Lab, Beijing 100094, Peoples R China
4.Beijing Jiaotong Univ, Sch Comp Sci & Technol, Beijing 100044, Peoples R China
推荐引用方式
GB/T 7714
Liu, Qingxiang,Sun, Sheng,Liu, Min,et al. Online Spatio-Temporal Correlation-Based Federated Learning for Traffic Flow Forecasting[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2024:13.
APA Liu, Qingxiang,Sun, Sheng,Liu, Min,Wang, Yuwei,&Gao, Bo.(2024).Online Spatio-Temporal Correlation-Based Federated Learning for Traffic Flow Forecasting.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,13.
MLA Liu, Qingxiang,et al."Online Spatio-Temporal Correlation-Based Federated Learning for Traffic Flow Forecasting".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS (2024):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Qingxiang]的文章
[Sun, Sheng]的文章
[Liu, Min]的文章
百度学术
百度学术中相似的文章
[Liu, Qingxiang]的文章
[Sun, Sheng]的文章
[Liu, Min]的文章
必应学术
必应学术中相似的文章
[Liu, Qingxiang]的文章
[Sun, Sheng]的文章
[Liu, Min]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。