CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
MGSFformer: A Multi-Granularity Spatiotemporal Fusion Transformer for air quality prediction
Yu, Chengqing1,2; Wang, Fei1,2; Wang, Yilun3; Shao, Zezhi1,2; Sun, Tao1; Yao, Di1; Xu, Yongjun1,2
2025
发表期刊INFORMATION FUSION
ISSN1566-2535
卷号113页码:15
摘要Air quality spatiotemporal prediction can provide technical support for environmental governance and sustainable city development. As a classic multi-source spatiotemporal data, effective multi-source information fusion is key to achieving accurate air quality predictions. However, due to not fully fusing two pieces of information, classical deep learning models struggle to achieve satisfactory prediction results: (1) Multi- granularity: each air monitoring station collects air quality data at different sampling intervals, which show distinct time series patterns. (2) Spatiotemporal correlation: due to human activities and atmospheric diffusion, there exist correlations between air quality data from different air monitoring stations, necessitating the consideration of other air monitoring stations' influences when modeling each air quality time series. In this study, to achieve satisfactory prediction results, we propose the Multi-Granularity Spatiotemporal Fusion Transformer, comprised of the residual de-redundant block, spatiotemporal attention block, and dynamic fusion block. Specifically, the residual de-redundant block eliminates information redundancy between data with different granularities and prevents the model from being misled by redundant information. The spatiotemporal attention block captures the spatiotemporal correlation of air quality data and facilitates prediction modeling. The dynamic fusion block evaluates the importance of data with different granularities and integrates the prediction results. Experimental results demonstrate that the proposed model surpasses 11 baselines by 5% in performance on three real-world datasets.
关键词Air quality prediction Multi-Granularity Spatiotemporal Fusion Transformer Spatiotemporal correlation Multi-source information fusion
DOI10.1016/j.inffus.2024.102607
收录类别SCI
语种英语
资助项目NSFC[62206266] ; NSFC[62372430] ; Youth Innovation Promotion Association CAS[2023112]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号WOS:001288156200001
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39670
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Fei; Xu, Yongjun
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.China North Ind Grp Corp, Inst Nav & Control Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Yu, Chengqing,Wang, Fei,Wang, Yilun,et al. MGSFformer: A Multi-Granularity Spatiotemporal Fusion Transformer for air quality prediction[J]. INFORMATION FUSION,2025,113:15.
APA Yu, Chengqing.,Wang, Fei.,Wang, Yilun.,Shao, Zezhi.,Sun, Tao.,...&Xu, Yongjun.(2025).MGSFformer: A Multi-Granularity Spatiotemporal Fusion Transformer for air quality prediction.INFORMATION FUSION,113,15.
MLA Yu, Chengqing,et al."MGSFformer: A Multi-Granularity Spatiotemporal Fusion Transformer for air quality prediction".INFORMATION FUSION 113(2025):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Chengqing]的文章
[Wang, Fei]的文章
[Wang, Yilun]的文章
百度学术
百度学术中相似的文章
[Yu, Chengqing]的文章
[Wang, Fei]的文章
[Wang, Yilun]的文章
必应学术
必应学术中相似的文章
[Yu, Chengqing]的文章
[Wang, Fei]的文章
[Wang, Yilun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。