CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A2Pt : Anti-Associative Prompt Tuning for Open Set Visual Recognition
Ren, Hairui1; Tang, Fan2; Pan, Xingjia3; Cao, Juan2; Dong, Weiming4; Lin, Zhiwen3; Yan, Ke3; Xu, Changsheng
2024
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
卷号26页码:8419-8431
摘要Multi-modality pre-trained models (PTMs) have considerably boosted the performance on a broad range of computer vision topics. Still, they have not been explored purposefully in open set recognition (OSR) scenarios when applying PTMs to downstream recognition tasks. Directly fine/prompt tuning PTMs on closed-set classification tasks will inevitably suffer from data bias and always learn more or less target class-irrelevant co-occurring contextual information, which leads to over-confident predictions on unknown samples. In this paper, we propose a simple yet effective approach, termed Anti-Associative Prompt Tuning (A(2)Pt), toward learning compact and accurate class-related representation with few class-irrelevant associations from context using multi-modal priors. Specifically, a cross-modal guided activation module is adopted to refine the class-aware representation and suppress the associations from co-occurring contexts by involving text-modal information. We further design an anti-association calibration module to obtain compact class-aware and class-irrelevant representations, respectively, by introducing two additional object functions. Extensive experiments on publicly available benchmarks, including CIFAR series, TinyImageNet, and ImageNet-21K-P, show that the proposed A(2)Pt achieves substantial and consistent performance gains compared with both SOTA OSR and PTM prompt tuning approaches.
关键词Tuning Neck Task analysis Image recognition Calibration Visualization Training Multi-modality Pre-trained models (PTMs) open set recognition (OSR) class-aware representation anti-associative prompt tuning (A(2)Pt)
DOI10.1109/TMM.2023.3339387
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62102162] ; National Natural Science Foundation of China[U20B2070] ; National Natural Science Foundation of China[61832016] ; National Natural Science Foundation of China[61832002] ; Beijing Natural Science Foundation[L221013]
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:001283692500027
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39666
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tang, Fan
作者单位1.Jilin Univ, Sch Artificial Intelligence, Jilin 130012, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100045, Peoples R China
3.Youtu Lab, Tencent, Shanghai 201103, Peoples R China
4.Chinese Acad Sci, Inst Automat, Beijing 100045, Peoples R China
推荐引用方式
GB/T 7714
Ren, Hairui,Tang, Fan,Pan, Xingjia,et al. A2Pt : Anti-Associative Prompt Tuning for Open Set Visual Recognition[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2024,26:8419-8431.
APA Ren, Hairui.,Tang, Fan.,Pan, Xingjia.,Cao, Juan.,Dong, Weiming.,...&Xu, Changsheng.(2024).A2Pt : Anti-Associative Prompt Tuning for Open Set Visual Recognition.IEEE TRANSACTIONS ON MULTIMEDIA,26,8419-8431.
MLA Ren, Hairui,et al."A2Pt : Anti-Associative Prompt Tuning for Open Set Visual Recognition".IEEE TRANSACTIONS ON MULTIMEDIA 26(2024):8419-8431.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ren, Hairui]的文章
[Tang, Fan]的文章
[Pan, Xingjia]的文章
百度学术
百度学术中相似的文章
[Ren, Hairui]的文章
[Tang, Fan]的文章
[Pan, Xingjia]的文章
必应学术
必应学术中相似的文章
[Ren, Hairui]的文章
[Tang, Fan]的文章
[Pan, Xingjia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。