CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Explainability for Large Language Models: A Survey
Zhao, Haiyan1; Chen, Hanjie2; Yang, Fan3; Liu, Ninghao4; Deng, Huiqi5; Cai, Hengyi6; Wang, Shuaiqiang7; Yin, Dawei7; Du, Mengnan1
2024-04-01
发表期刊ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY
ISSN2157-6904
卷号15期号:2页码:38
摘要Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this article, we introduce a taxonomy of explainability techniques and provide a structured overview ofmethods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional deep learning models.
关键词Explainability interpretability large language models
DOI10.1145/3639372
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:001208775700001
出版者ASSOC COMPUTING MACHINERY
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39001
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhao, Haiyan
作者单位1.New Jersey Inst Technol, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102 USA
2.Johns Hopkins Univ, 3400 N Charles St, Baltimore, MD 21218 USA
3.Wake Forest Univ, 1834 Wake Forest Rd, Winston Salem, NC 27109 USA
4.Univ Georgia, Herty Dr, Athens, GA 30602 USA
5.Shanghai Jiao Tong Univ, 800 Dongchuan RD, Shanghai 200240, Peoples R China
6.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
7.10 Shangdi 10th St, Beijing 100085, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Haiyan,Chen, Hanjie,Yang, Fan,et al. Explainability for Large Language Models: A Survey[J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,2024,15(2):38.
APA Zhao, Haiyan.,Chen, Hanjie.,Yang, Fan.,Liu, Ninghao.,Deng, Huiqi.,...&Du, Mengnan.(2024).Explainability for Large Language Models: A Survey.ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,15(2),38.
MLA Zhao, Haiyan,et al."Explainability for Large Language Models: A Survey".ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 15.2(2024):38.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Haiyan]的文章
[Chen, Hanjie]的文章
[Yang, Fan]的文章
百度学术
百度学术中相似的文章
[Zhao, Haiyan]的文章
[Chen, Hanjie]的文章
[Yang, Fan]的文章
必应学术
必应学术中相似的文章
[Zhao, Haiyan]的文章
[Chen, Hanjie]的文章
[Yang, Fan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。