CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
AIROGS: Artificial Intelligence for Robust Glaucoma Screening Challenge
de Vente, Coen1,2,3; Vermeer, Koenraad A.4; Jaccard, Nicolas5; Wang, He6,7; Sun, Hongyi8; Khader, Firas9; Truhn, Daniel9; Aimyshev, Temirgali10; Zhanibekuly, Yerkebulan10; Le, Tien-Dung11; Galdran, Adrian12,13; Ballester, Miguel Angel Gonzalez12,14,24; Carneiro, Gustavo13,15; Devika, R. G.16; Sethumadhavan, Hrishikesh Panikkasseril17; Puthussery, Densen17; Liu, Hong18; Yang, Zekang18; Kondo, Satoshi19; Kasai, Satoshi20; Wang, Edward21; Durvasula, Ashritha21; Heras, Jonathan22; Zapata, Miguel Angel23; Araujo, Teresa25; Aresta, Guilherme25; Bogunovic, Hrvoje25; Arikan, Mustafa26; Lee, Yeong Chan27; Cho, Hyun Bin28; Choi, Yoon Ho28,29; Qayyum, Abdul30; Razzak, Imran31; van Ginneken, Bram3; Lemij, Hans G.; Sanchez, Clara I.1,2
2024
发表期刊IEEE TRANSACTIONS ON MEDICAL IMAGING
ISSN0278-0062
卷号43期号:1页码:542-557
摘要The early detection of glaucoma is essential in preventing visual impairment. Artificial intelligence (AI) can be used to analyze color fundus photographs (CFPs) in a cost-effective manner, making glaucoma screening more accessible. While AI models for glaucoma screening from CFPs have shown promising results in laboratory settings, their performance decreases significantly in real-world scenarios due to the presence of out-of-distribution and low-quality images. To address this issue, we propose the Artificial Intelligence for Robust Glaucoma Screening (AIROGS) challenge. This challenge includes a large dataset of around 113,000 images from about 60,000 patients and 500 different screening centers, and encourages the development of algorithms that are robust to ungradable and unexpected input data. We evaluated solutions from 14 teams in this paper and found that the best teams performed similarly to a set of 20 expert ophthalmologists and optometrists. The highest-scoring team achieved an area under the receiver operating characteristic curve of 0.99 (95% CI: 0.98-0.99) for detecting ungradable images on-the-fly. Additionally, many of the algorithms showed robust performance when tested on three other publicly available datasets. These results demonstrate the feasibility of robust AI-enabled glaucoma screening.
关键词Color fundus photography glaucoma screening out-of-distribution detection retina robustness
DOI10.1109/TMI.2023.3313786
收录类别SCI
语种英语
资助项目Eurostars
WOS研究方向Computer Science ; Engineering ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001158081600018
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38815
专题中国科学院计算技术研究所期刊论文_英文
通讯作者de Vente, Coen
作者单位1.Univ Amsterdam, Informat Inst, Quantitat Healthcare Anal QurAI Grp, NL-1098 XH Amsterdam, Netherlands
2.Amsterdam UMC Locatie AMC, Dept Biomed Engn & Phys, NL-1105 AZ Amsterdam, Noord Holland, Netherlands
3.Radboudumc, Dept Radiol & Nucl Med, Diagnost Image Anal Grp DIAG, NL-6500 HB Nijmegen, Gelderland, Netherlands
4.Rotterdam Eye Hosp, Rotterdam Ophthalm Inst, NL-3011 BH Rotterdam, Netherlands
5.Project Orbis Int Inc, New York, NY 10017 USA
6.Peking Union Med Coll Hosp, Beijing 100730, Peoples R China
7.Capital Med Univ, Xuanwu Hosp, Beijing 100053, Peoples R China
8.Tsinghua Univ, Dept Automat, Beijing 100190, Peoples R China
9.Univ Hosp Aachen, Dept Diagnost & Intervent Radiol, D-52074 Aachen, Germany
10.CMC Technol LLP, Z05T0B8, Nur Sultan, Kazakhstan
11.KBC, B-1080 Brussels, Belgium
12.Univ Pompeu Fabra, Dept Tecnol Informacio & Comunicac DTIC, Barcelona 08018, Spain
13.Univ Adelaide, Australian Inst Machine Learning AIML, Adelaide, SA 5000, Australia
14.ICREA, Barcelona 08010, Spain
15.Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford GU2 7XH, England
16.Coll Engn Trivandrum, Thiruvananthapuram 695016, India
17.Founding Minds Software, Thiruvananthapuram 682030, India
18.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
19.Muroran Inst Technol, Muroran 0508585, Japan
20.Niigata Univ Hlth & Welf, Niigata 9503102, Japan
21.Univ Western Ontario, Schulich Sch Med & Dent, London, ON N6A 5C1, Canada
22.Univ La Rioja, Dept Math & Comp Sci, Logrono 26004, Spain
23.Hosp Valle De Hebron, Sant Cugat Del Valles 08195, Spain
24.UPRetina, Barcelona 08195, Spain
25.Med Univ Vienna, Dept Ophthalmol & Optometry, Christian Doppler Lab Artificial Intelligence Reti, A-1090 Vienna, Austria
26.UCL, Inst Ophthalmol, London EC1V 9EL, England
27.Samsung Med Ctr, Res Inst Future Med, Seoul 06351, South Korea
28.Sungkyunkwan Univ, Samsung Med Ctr, Samsung Adv Inst Hlth Sci & Technol SAIHST, Dept Digital Hlth, Seoul 06351, South Korea
29.Mayo Clin, Dept Artificial Intelligence & Informat, Jacksonville, FL 32224 USA
30.Kings Coll London, Dept Biomed Engn, London, England
31.Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 3125, Australia
推荐引用方式
GB/T 7714
de Vente, Coen,Vermeer, Koenraad A.,Jaccard, Nicolas,et al. AIROGS: Artificial Intelligence for Robust Glaucoma Screening Challenge[J]. IEEE TRANSACTIONS ON MEDICAL IMAGING,2024,43(1):542-557.
APA de Vente, Coen.,Vermeer, Koenraad A..,Jaccard, Nicolas.,Wang, He.,Sun, Hongyi.,...&Sanchez, Clara I..(2024).AIROGS: Artificial Intelligence for Robust Glaucoma Screening Challenge.IEEE TRANSACTIONS ON MEDICAL IMAGING,43(1),542-557.
MLA de Vente, Coen,et al."AIROGS: Artificial Intelligence for Robust Glaucoma Screening Challenge".IEEE TRANSACTIONS ON MEDICAL IMAGING 43.1(2024):542-557.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[de Vente, Coen]的文章
[Vermeer, Koenraad A.]的文章
[Jaccard, Nicolas]的文章
百度学术
百度学术中相似的文章
[de Vente, Coen]的文章
[Vermeer, Koenraad A.]的文章
[Jaccard, Nicolas]的文章
必应学术
必应学术中相似的文章
[de Vente, Coen]的文章
[Vermeer, Koenraad A.]的文章
[Jaccard, Nicolas]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。