CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Local–Global Cross Fusion Network With Gaussian-Initialized Learnable Positional Prompting for Hyperspectral Image Classification
Zhang, Xin1; Zhang, Rui1; Li, Ling2; Li, Wei1
2023
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892
卷号61页码:16
摘要Deep learning has significantly advanced the field of hyperspectral remote sensing image classification. Among various methods, the classification method based on spectral-spatial features for hyperspectral classification has attracted wide attention because of its exceptional classification performance. However, such methods encounter challenges in handling input sample and feature extraction. Regarding the input sample, current hyperspectral image (HSI) classification methods based on spectral-spatial features treat each pixel of the sample equally, resulting in inadequate attention to valuable pixels within 3-D samples. Regarding feature extraction, the classification methods struggle to effectively extract both local and global information from HSIs. Aiming at solving the above problems, we propose the local-global cross fusion network with Gaussian-initialized positional prompting (LGGNet). LGGNet is designed with an end-to-end architecture, primarily comprising the Gaussian-initialized learnable positional prompting and the local-global cross fusion network. The Gaussian-initialized learnable positional prompting introduces prompting technique into HSI classification, utilizing trainable parameters with prior information to learn the spatial importance of different pixels within a sample for the first time. The local-global cross fusion network combines operations such as 3-D convolutional neural network (CNN) feature extraction, transformer feature extraction, and feature fusion, efficiently integrating local and global features. Extensive experiments showcase that LGGNet achieves state-of-the-art performance with limited training samples on four benchmark datasets, all within a lightweight framework. The relevant code is available at https://github.com/ibelieveican2018/LGGNet.
关键词3-D convolutional neural network (CNN) hyperspectral image (HSI) classification prompting remote sensing transformer
DOI10.1109/TGRS.2023.3335864
收录类别SCI
语种英语
资助项目NSF of China
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001122847500008
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38468
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Rui
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Xin,Zhang, Rui,Li, Ling,等. Local–Global Cross Fusion Network With Gaussian-Initialized Learnable Positional Prompting for Hyperspectral Image Classification[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2023,61:16.
APA Zhang, Xin,Zhang, Rui,Li, Ling,&Li, Wei.(2023).Local–Global Cross Fusion Network With Gaussian-Initialized Learnable Positional Prompting for Hyperspectral Image Classification.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,61,16.
MLA Zhang, Xin,et al."Local–Global Cross Fusion Network With Gaussian-Initialized Learnable Positional Prompting for Hyperspectral Image Classification".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 61(2023):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Xin]的文章
[Zhang, Rui]的文章
[Li, Ling]的文章
百度学术
百度学术中相似的文章
[Zhang, Xin]的文章
[Zhang, Rui]的文章
[Li, Ling]的文章
必应学术
必应学术中相似的文章
[Zhang, Xin]的文章
[Zhang, Rui]的文章
[Li, Ling]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。