CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Sensitive Data Privacy Protection of Carrier in Intelligent Logistics System
Yao, Zhengyi1; Tan, Liang1,2,3; Yi, Junhao4; Fu, Luxia1; Zhang, Zhuang1; Tan, Xinghong1; Xie, Jingxue1; She, Kun5; Yang, Peng1; Wu, Wanjing1; Ye, Danlian1; Yu, Ziyuan1
2024
发表期刊SYMMETRY-BASEL
卷号16期号:1页码:29
摘要An intelligent logistics system is a production system based on the Internet of Things (IoT), and the logistics information of humans has a high degree of privacy. However, the current intelligent logistics system only protects the privacy of shippers and consignees, without any privacy protection for carriers, which will not only cause carriers' privacy leakage but also indirectly or directly affect the logistics efficiency. It is particularly worth noting that solving this problem requires one to consider the balance between privacy protection and operational visibility. So, the local privacy protection algorithm epsilon-L_LDP for carriers' multidimensional numerical sensitive data and epsilon-LT_LDP for carrier location sensitive data are proposed. For epsilon-L_LDP, firstly, a personalized and locally differentiated privacy budgeting approach is used. Then, the multidimensional data personalization perturbation mechanism algorithm L-PM is designed. Finally, the multidimensional data are perturbed using L-PM. For epsilon-LT_LDP, firstly, the location area is matrix-partitioned and quadtree indexed, and the location data are indexed according to the quadtree to obtain the geographic location code in which it is located. Secondly, the personalized random response perturbation algorithm L-RR for location trajectory data is also designed. Finally, the L-RR algorithm is used to implement the perturbation of geolocation-encoded data. Experiments are conducted using real and simulated datasets, the results show that the epsilon-L_LDP algorithm and epsilon-LT_LDP algorithm can better protect the privacy information of carriers and ensure the availability of carrier data during the logistics process. This effectively meets the balance between the privacy protection and operational visibility of the intelligent logistics system.
关键词data privacy location privacy smart logistics platform privacy protection
DOI10.3390/sym16010068
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:001151335000001
出版者MDPI
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38394
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tan, Liang
作者单位1.Sichuan Normal Univ, Coll Comp Sci, Chengdu 610066, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100864, Peoples R China
3.Univ Elect Sci & Technol China, Inst Cyberspace Secur, Chengdu 610054, Peoples R China
4.Chengdu Jincheng Coll, Software Engn Dept, Chengdu 611731, Peoples R China
5.Univ Elect Sci & Technol China, Coll Informat & Software Engn, Chengdu 610054, Peoples R China
推荐引用方式
GB/T 7714
Yao, Zhengyi,Tan, Liang,Yi, Junhao,et al. Sensitive Data Privacy Protection of Carrier in Intelligent Logistics System[J]. SYMMETRY-BASEL,2024,16(1):29.
APA Yao, Zhengyi.,Tan, Liang.,Yi, Junhao.,Fu, Luxia.,Zhang, Zhuang.,...&Yu, Ziyuan.(2024).Sensitive Data Privacy Protection of Carrier in Intelligent Logistics System.SYMMETRY-BASEL,16(1),29.
MLA Yao, Zhengyi,et al."Sensitive Data Privacy Protection of Carrier in Intelligent Logistics System".SYMMETRY-BASEL 16.1(2024):29.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yao, Zhengyi]的文章
[Tan, Liang]的文章
[Yi, Junhao]的文章
百度学术
百度学术中相似的文章
[Yao, Zhengyi]的文章
[Tan, Liang]的文章
[Yi, Junhao]的文章
必应学术
必应学术中相似的文章
[Yao, Zhengyi]的文章
[Tan, Liang]的文章
[Yi, Junhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。