CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Double Precision is not Necessary for LSQR for Solving Discrete Linear Ill-Posed Problems
Li, Haibo
2024-03-01
发表期刊JOURNAL OF SCIENTIFIC COMPUTING
ISSN0885-7474
卷号98期号:3页码:30
摘要The growing availability and usage of low precision floating point formats attracts many interests of developing lower or mixed precision algorithms for scientific computing problems. In this paper we investigate the possibility of exploiting mixed precision computing in LSQR for solving discrete linear ill-posed problems. Based on the commonly used regularization model for linear inverse problems, we analyze the choice of proper computing precision in the two main parts of LSQR, including the construction of Krylov subspace and updating procedure of iterative solutions. We show that, under some mild conditions, the Lanczos vectors can be computed using single precision without loss of any accuracy of the final regularized solution as long as the noise level is not extremely small. We also show that the most time consuming part for updating iterative solutions can be performed using single precision without sacrificing any accuracy. The results indicate that several highly time consuming parts of the algorithm can be implemented using lower precisions, and provide a theoretical guideline for implementing a robust and efficient mixed precision variant of LSQR for solving discrete linear ill-posed problems. Numerical experiments are made to test two mixed precision variants of LSQR and confirming our results.
关键词Mixed precision Linear ill-posed problem Regularization LSQR Roundoff unit Semi-convergence
DOI10.1007/s10915-023-02447-4
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[3192270206]
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:001154181300002
出版者SPRINGER/PLENUM PUBLISHERS
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38364
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Haibo
作者单位Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Haibo. Double Precision is not Necessary for LSQR for Solving Discrete Linear Ill-Posed Problems[J]. JOURNAL OF SCIENTIFIC COMPUTING,2024,98(3):30.
APA Li, Haibo.(2024).Double Precision is not Necessary for LSQR for Solving Discrete Linear Ill-Posed Problems.JOURNAL OF SCIENTIFIC COMPUTING,98(3),30.
MLA Li, Haibo."Double Precision is not Necessary for LSQR for Solving Discrete Linear Ill-Posed Problems".JOURNAL OF SCIENTIFIC COMPUTING 98.3(2024):30.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Haibo]的文章
百度学术
百度学术中相似的文章
[Li, Haibo]的文章
必应学术
必应学术中相似的文章
[Li, Haibo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。