CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Uncertainty Modeling for Robust Domain Adaptation Under Noisy Environments
Zhuo, Junbao1; Wang, Shuhui1,2; Huang, Qingming1,2,3
2023
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
卷号25页码:6157-6170
摘要In this paper, we tackle the task of domain adaptation under noisy environments; this is a practical and challenging problem in which the source domain is corrupted with noise in its labels, its features, or both. Noise in the source domain leads to inaccurate visual representations and makes it harder to estimate and reduce the domain discrepancy between the source and target domains, resulting in severe performance degradation in the target domain. These challenges can be addressed with offline source sample selection following robust domain discrepancy reduction. To achieve reliable sample selection, we model the uncertainty in the predictions of a convolutional neural network (CNN) classifier and reweight the classification loss by this uncertainty. Such a reweighting mechanism reduces the contribution of noise, leading to improved noise robustness. We further propose UncertaintyRank, a novel regularizer, to encourage the uncertainty to be more sensitive to noisy labels, as label corruption brings more severe degradation. The uncertainty is also aggregated with the classification loss to eliminate the adverse effects of noisy representations while estimating the domain discrepancy. Extensive experiments validate the effectiveness of our method and verify that it performs favorably against existing state-of-the-art methods.
关键词Domain Adaptation Uncertainty Noisy Label Transfer Learning Deep Learning
DOI10.1109/TMM.2022.3205457
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2018AAA0102000] ; National Natural Science Foundation of China[62022083] ; National Natural Science Foundation of China[U21B2038] ; National Natural Science Foundation of China[61931008] ; Fundamental Research Funds for the Central Universities
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:001098831500037
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:9[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38070
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Shuhui
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Peng Cheng Lab, Shenzhen 518066, Peoples R China
3.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
推荐引用方式
GB/T 7714
Zhuo, Junbao,Wang, Shuhui,Huang, Qingming. Uncertainty Modeling for Robust Domain Adaptation Under Noisy Environments[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2023,25:6157-6170.
APA Zhuo, Junbao,Wang, Shuhui,&Huang, Qingming.(2023).Uncertainty Modeling for Robust Domain Adaptation Under Noisy Environments.IEEE TRANSACTIONS ON MULTIMEDIA,25,6157-6170.
MLA Zhuo, Junbao,et al."Uncertainty Modeling for Robust Domain Adaptation Under Noisy Environments".IEEE TRANSACTIONS ON MULTIMEDIA 25(2023):6157-6170.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhuo, Junbao]的文章
[Wang, Shuhui]的文章
[Huang, Qingming]的文章
百度学术
百度学术中相似的文章
[Zhuo, Junbao]的文章
[Wang, Shuhui]的文章
[Huang, Qingming]的文章
必应学术
必应学术中相似的文章
[Zhuo, Junbao]的文章
[Wang, Shuhui]的文章
[Huang, Qingming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。