CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Efficient parallel optimizations of a high-performance SIFT on GPUs
Li, Zhihao1,2; Jia, Haipeng1; Zhang, Yunquan1; Liu, Shice1,2; Li, Shigang1; Wang, Xiao1,2; Zhang, Hao3
2019-02-01
发表期刊JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
ISSN0743-7315
卷号124页码:78-91
摘要Stable local image feature detection is a fundamental problem in computer vision and is critical for obtaining the corresponding interest points among images. As a popular and robust feature extraction algorithm, the scale invariant feature transform (SIFT) is widely used in various domains, such as image stitching and remote sensing image registration. However, the computational complexity of SIFT is extremely high, which limits its application in real-time systems and large-scale data processing tasks. Thus, we propose several efficient optimizations to realize a high-performance SIFT (HartSift) by exploiting the computing resources of CPUs and GPUs in a heterogeneous machine. Our experimental results show that HartSift processes an image within 3.07 similar to 7.71 ms, which is 55.88 similar to 121.99 times, 5.17 similar to 6.88 times, and 1.25 similar to 1.79 times faster than OpenCV SIFT, SiftGPU, and CudaSift, respectively. (C) 2018 Elsevier Inc. All rights reserved.
关键词HartSift SIFT CPU High performance Feature extraction
DOI10.1016/j.jpdc.2018.10.012
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61602443] ; National Natural Science Foundation of China[61432018] ; National Natural Science Foundation of China[61521092] ; National Natural Science Foundation of China[61502450] ; National Key Research and Development Program of China[2107YFB0202105] ; National Key Research and Development Program of China[2016YFE0100300] ; National Key Research and Development Program of China[2017YFB0202302] ; Key Technology Research and Development Programs of Guangdong Province[2015B010108006]
WOS研究方向Computer Science
WOS类目Computer Science, Theory & Methods
WOS记录号WOS:000452939400008
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/3509
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jia, Haipeng
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
3.Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Li, Zhihao,Jia, Haipeng,Zhang, Yunquan,et al. Efficient parallel optimizations of a high-performance SIFT on GPUs[J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING,2019,124:78-91.
APA Li, Zhihao.,Jia, Haipeng.,Zhang, Yunquan.,Liu, Shice.,Li, Shigang.,...&Zhang, Hao.(2019).Efficient parallel optimizations of a high-performance SIFT on GPUs.JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING,124,78-91.
MLA Li, Zhihao,et al."Efficient parallel optimizations of a high-performance SIFT on GPUs".JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 124(2019):78-91.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Zhihao]的文章
[Jia, Haipeng]的文章
[Zhang, Yunquan]的文章
百度学术
百度学术中相似的文章
[Li, Zhihao]的文章
[Jia, Haipeng]的文章
[Zhang, Yunquan]的文章
必应学术
必应学术中相似的文章
[Li, Zhihao]的文章
[Jia, Haipeng]的文章
[Zhang, Yunquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。