CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Joint Design of Training and Hardware Towards Efficient and Accuracy-Scalable Neural Network Inference
He, Xin1; Lu, Wenyan2,3; Yan, Guihai4; Zhang, Xuan1
2018-12-01
发表期刊IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS
ISSN2156-3357
卷号8期号:4页码:810-821
摘要The intrinsic error tolerance of neural network (NN) presents opportunities for approximate computing techniques to improve the energy efficiency of NN inference. Conventional approximate computing focuses on exploiting the efficiency-accuracy trade-off in existing pre-trained networks, which can lead to suboptimal solutions. In this paper, we first present AxTrain, a hardware-oriented training framework to facilitate approximate computing for NN inference. Specifically, AxTrain leverages the synergy between two orthogonal methods-one actively searches for a network parameters distribution with high error tolerance, and the other passively learns resilient weights by numerically incorporating the noise distributions of the approximate hardware in the forward pass during the training phase. Then, we incorporate AxTrain framework in an accuracy-scalable NN accelerator designed for high energy efficiency. Experimental results from various data sets with different approximation strategies demonstrate AxTrain's ability to obtain resilient neural network parameters for approximate computing and to improve system energy efficiency. And with AxTrain-guided NN models our proposed accuracy-scalable NN accelerator could achieve significantly higher energy efficiency with limited accuracy degradation under joint approximation techniques.
关键词Approximate computing neural network accelerator hardware-oriented training sensitivity analysis energy efficient architecture near threshold voltage approximate multiplier
DOI10.1109/JETCAS.2018.2845396
收录类别SCI
语种英语
资助项目Natural Science Foundation Award[1657562] ; National Natural Science Foundation of China[61572470]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000454224200012
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/3499
专题中国科学院计算技术研究所期刊论文_英文
通讯作者He, Xin
作者单位1.Washington Univ St Louis, Dept Elect & Syst Engn, St Louis, MO 63130 USA
2.Chinese Acad Sci, State Key Lab Comp Architecture, Inst Comp Technol, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Sch Comp & Control Engineer, Beijing 100190, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Key Lab Comp Architecture, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
He, Xin,Lu, Wenyan,Yan, Guihai,et al. Joint Design of Training and Hardware Towards Efficient and Accuracy-Scalable Neural Network Inference[J]. IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS,2018,8(4):810-821.
APA He, Xin,Lu, Wenyan,Yan, Guihai,&Zhang, Xuan.(2018).Joint Design of Training and Hardware Towards Efficient and Accuracy-Scalable Neural Network Inference.IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS,8(4),810-821.
MLA He, Xin,et al."Joint Design of Training and Hardware Towards Efficient and Accuracy-Scalable Neural Network Inference".IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 8.4(2018):810-821.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Xin]的文章
[Lu, Wenyan]的文章
[Yan, Guihai]的文章
百度学术
百度学术中相似的文章
[He, Xin]的文章
[Lu, Wenyan]的文章
[Yan, Guihai]的文章
必应学术
必应学术中相似的文章
[He, Xin]的文章
[Lu, Wenyan]的文章
[Yan, Guihai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。