Institute of Computing Technology, Chinese Academy IR
Multi-modal semantic autoencoder for cross-modal retrieval | |
Wu, Yiling1,2; Wang, Shuhui1; Huang, Qingming2 | |
2019-02-28 | |
发表期刊 | NEUROCOMPUTING |
ISSN | 0925-2312 |
卷号 | 331页码:165-175 |
摘要 | Cross-modal retrieval has gained much attention in recent years. As the research mainstream, most of existing approaches learn projections for data from different modalities into a common space where data can be compared directly. However, they neglect the preservation of feature and semantic information, so they are unable to obtain satisfactory results as expected. In this paper, we propose a two-stage learning method to learn multi-modal mappings that project multi-modal data to low dimensional embeddings that preserve both feature and semantic information. In the first stage, we combine both low-level feature and high-level semantic information to learn feature-aware semantic code vectors. In the second stage, we use encoder-decoder paradigm to learn projections. The encoder projects feature vectors to code vectors, and the decoder projects code vectors back to feature vectors. The encoder-decoder paradigm guarantees the embeddings to preserve both feature and semantic information. An alternating minimization procedure is developed to solve the multi-modal semantic autoencoder optimization problem. Extensive experiments on three benchmark datasets demonstrate that the proposed method outperforms state-of-the-art cross-modal retrieval methods. (C) 2018 Elsevier B.V. All rights reserved. |
关键词 | Cross-modal retrieval Multi-modal data Autoencoder |
DOI | 10.1016/j.neucom.2018.11.042 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61672497] ; National Natural Science Foundation of China[61332016] ; National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61650202] ; National Natural Science Foundation of China[U1636214] ; National Basic Research Program of China (973 Program)[2015CB351802] ; Key Research Program of Frontier Sciences of CAS[QYZDJ-SSW-SYS013] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000455210900015 |
出版者 | ELSEVIER SCIENCE BV |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/3477 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Wang, Shuhui |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Wu, Yiling,Wang, Shuhui,Huang, Qingming. Multi-modal semantic autoencoder for cross-modal retrieval[J]. NEUROCOMPUTING,2019,331:165-175. |
APA | Wu, Yiling,Wang, Shuhui,&Huang, Qingming.(2019).Multi-modal semantic autoencoder for cross-modal retrieval.NEUROCOMPUTING,331,165-175. |
MLA | Wu, Yiling,et al."Multi-modal semantic autoencoder for cross-modal retrieval".NEUROCOMPUTING 331(2019):165-175. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论