CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Multi-source underwater DOA estimation using PSO-BP neural network based on high-order cumulant optimization
Chen, Haihua1; Zhang, Jingyao1; Jiang, Bin3; Cui, Xuerong2; Zhou, Rongrong2; Zhang, Yucheng1
2023-05-10
发表期刊CHINA COMMUNICATIONS
ISSN1673-5447
页码18
摘要Due to the complex and changeable environment under water, the performance of traditional DOA estimation algorithms based on mathematical model, such as MUSIC, ESPRIT, etc., degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model. In addition, the neural network has the ability of generalization and mapping, it can consider the noise, transmission channel inconsistency and other factors of the objective environment. Therefore, this paper utilizes Back Propagation (BP) neural network as the basic framework of underwater DOA estimation. Furthermore, in order to improve the performance of DOA estimation of BP neural network, the following three improvements are proposed. (1) Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process, PSO-BP-NN based on optimized particle swarm optimization (PSO) algorithm is proposed. (2) The Higher-order cumulant of the received signal is utilized to establish the training model. (3) A BP neural network training method for arbitrary number of sources is proposed. Finally, the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm.
关键词Direction-of-arrival estimation Estimation Neural networks Mathematical models Training Covariance matrices Biological neural networks particle swarm optimization (PSO) algorithm PSO-BP neural network gaussian colored noise multiple sources higher-order cumulant
DOI10.23919/JCC.ea.2021-0031.202302
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of Chinese Academy of Sciences[XDA28040000] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA28120000] ; Natural Science Foundation of Shandong Province[ZR2021MF094] ; Key R & D Plan of Shandong Province[2020CXGC010804] ; Central Leading Local Science and Technology Development Special Fund Project[YDZX2021122] ; Science & Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta[2022SZX11]
WOS研究方向Telecommunications
WOS类目Telecommunications
WOS记录号WOS:000988374000001
出版者CHINA INST COMMUNICATIONS
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21448
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Jingyao
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100080, Peoples R China
2.China Univ Petr East China, Coll Oceanog & Space Informat, Qingdao 266580, Peoples R China
3.China YITUO Grp Co Ltd, Luoyang 471000, Peoples R China
推荐引用方式
GB/T 7714
Chen, Haihua,Zhang, Jingyao,Jiang, Bin,et al. Multi-source underwater DOA estimation using PSO-BP neural network based on high-order cumulant optimization[J]. CHINA COMMUNICATIONS,2023:18.
APA Chen, Haihua,Zhang, Jingyao,Jiang, Bin,Cui, Xuerong,Zhou, Rongrong,&Zhang, Yucheng.(2023).Multi-source underwater DOA estimation using PSO-BP neural network based on high-order cumulant optimization.CHINA COMMUNICATIONS,18.
MLA Chen, Haihua,et al."Multi-source underwater DOA estimation using PSO-BP neural network based on high-order cumulant optimization".CHINA COMMUNICATIONS (2023):18.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Haihua]的文章
[Zhang, Jingyao]的文章
[Jiang, Bin]的文章
百度学术
百度学术中相似的文章
[Chen, Haihua]的文章
[Zhang, Jingyao]的文章
[Jiang, Bin]的文章
必应学术
必应学术中相似的文章
[Chen, Haihua]的文章
[Zhang, Jingyao]的文章
[Jiang, Bin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。