CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Deep spatial-temporal travel time prediction model based on trajectory feature
Sheng, Zhaoyu1,2; Lv, Zhiqiang1,2,3; Li, Jianbo1; Xu, Zhihao1,2
2023-09-01
发表期刊COMPUTERS & ELECTRICAL ENGINEERING
ISSN0045-7906
卷号110页码:12
摘要Research on travel time prediction shows its importance in the rational planning of travel arrangements and traffic congestion mitigation. The scale of taxi and online ride-hailing users is huge, and accurate travel time prediction is convenient for passengers to reasonably arrange travel planning. Unlike highways and buses, the trajectory of taxis is complex. At the same time, the travel time prediction of the taxi is affected by many factors. Existing models lack effective trajectory feature. They have low accuracy in predicting travel time in urban areas. This will affect the travel arrangement of passengers. In this paper, we propose a trajectory feature learning method based on the image processing method and time series prediction. Traffic congestion is quantified as the congestion value, and a variety of external factors are considered. The experimental results show that this model has advantages over some classical models in predicting travel time.
关键词Travel time prediction Trajectory feature Traffic condition Spatial correlation Temporal dependence
DOI10.1016/j.compeleceng.2023.108868
收录类别SCI
语种英语
资助项目National Key Research and Development Plan Key Special Projects, China[2018YFB2100303] ; Shandong Province Colleges and Universities Youth Innovation Technology Plan Innovation Team project, China[2020KJN011] ; Shandong Provincial Natural Science Foundation, China[ZR2020MF060] ; Program for Innovative Postdoctoral Talents in Shandong Province, China[40618030001] ; National Natural Science Foundation of China[61802216] ; Postdoctoral Science Foundation of China[2018M642613]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号WOS:001046097400001
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21354
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Jianbo
作者单位1.Qingdao Univ, Coll Comp Sci & Technol, Ningxia Rd, Qingdao 266071, Shandong, Peoples R China
2.Inst Ubiquitous Networks & Urban Comp, Ningxia Rd, Qingdao 266071, Shandong, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Haidian Rd, Beijing 100086, Peoples R China
推荐引用方式
GB/T 7714
Sheng, Zhaoyu,Lv, Zhiqiang,Li, Jianbo,et al. Deep spatial-temporal travel time prediction model based on trajectory feature[J]. COMPUTERS & ELECTRICAL ENGINEERING,2023,110:12.
APA Sheng, Zhaoyu,Lv, Zhiqiang,Li, Jianbo,&Xu, Zhihao.(2023).Deep spatial-temporal travel time prediction model based on trajectory feature.COMPUTERS & ELECTRICAL ENGINEERING,110,12.
MLA Sheng, Zhaoyu,et al."Deep spatial-temporal travel time prediction model based on trajectory feature".COMPUTERS & ELECTRICAL ENGINEERING 110(2023):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sheng, Zhaoyu]的文章
[Lv, Zhiqiang]的文章
[Li, Jianbo]的文章
百度学术
百度学术中相似的文章
[Sheng, Zhaoyu]的文章
[Lv, Zhiqiang]的文章
[Li, Jianbo]的文章
必应学术
必应学术中相似的文章
[Sheng, Zhaoyu]的文章
[Lv, Zhiqiang]的文章
[Li, Jianbo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。