CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
AD-YOLOv5s based UAV detection for low altitude security
Shang, Yuanfeng1,2,3; Liu, Chang1,2,3; Qiu, Dawei1,2,3,5; Zhao, Zixu1,2,3,4; Wu, Ruikang1,2,3; Tang, Shuyuan1,4
2023
发表期刊INTERNATIONAL JOURNAL OF MICRO AIR VEHICLES
ISSN1756-8293
卷号15页码:19
摘要UAV (Unmanned Aerial Vehicle) black flight at low altitude could cause serious safety risks. Consequently, it is crucial to detect and manage low altitude small UAVs. The existing methods of low altitude small UAV detection suffer from problems such as high false alarm rate, and poor real-time performance. In order to solve the above problems, we present a novel approach, named AD-YOLOv5s, to achieve low altitude small UAV detection with high precision and high real-time performance. Firstly, the feature enhancement method is used to expand the dataset. We optimize the model feature fusion, the prediction head structure, and the loss function. Based on the CBAM (Convolutional Block Attention Module) attention mechanism, feature enhancement is performed to improve the detection accuracy. Secondly, the ghost module and depthwise separable convolution are used to reduce the number of parameters of the model, and we propose the method of lightweight design of model to improve the detection speed. Compared with the YOLOv5s model, the experiment result shows that our proposed AD-YOLOv5s model improves the value of mAP by 2.2% and the value of Recall by 1.8%, reduces the value of GFLOPs by 29.9% and parameters by 38.8%, and achieves 27.6 FPS when the proposed model deploy on a low-cost edge computing device (jetson nano).
关键词Low Altitude Security object detection embedded deployment deep learning UAV
DOI10.1177/17568293231190017
收录类别SCI
语种英语
资助项目National Key Ramp;D Program of China[2022YFC3320800] ; Zhejiang Provincial Key Ramp;D Plan of China[2021C01040]
WOS研究方向Engineering
WOS类目Engineering, Aerospace
WOS记录号WOS:001037734500001
出版者SAGE PUBLICATIONS LTD
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21282
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Qiu, Dawei
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
4.Beijing Key Lab Mobile Comp & Pervas Device, Beijing, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Inst Comp Technol,State Key Lab Processors,CAS, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Shang, Yuanfeng,Liu, Chang,Qiu, Dawei,et al. AD-YOLOv5s based UAV detection for low altitude security[J]. INTERNATIONAL JOURNAL OF MICRO AIR VEHICLES,2023,15:19.
APA Shang, Yuanfeng,Liu, Chang,Qiu, Dawei,Zhao, Zixu,Wu, Ruikang,&Tang, Shuyuan.(2023).AD-YOLOv5s based UAV detection for low altitude security.INTERNATIONAL JOURNAL OF MICRO AIR VEHICLES,15,19.
MLA Shang, Yuanfeng,et al."AD-YOLOv5s based UAV detection for low altitude security".INTERNATIONAL JOURNAL OF MICRO AIR VEHICLES 15(2023):19.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shang, Yuanfeng]的文章
[Liu, Chang]的文章
[Qiu, Dawei]的文章
百度学术
百度学术中相似的文章
[Shang, Yuanfeng]的文章
[Liu, Chang]的文章
[Qiu, Dawei]的文章
必应学术
必应学术中相似的文章
[Shang, Yuanfeng]的文章
[Liu, Chang]的文章
[Qiu, Dawei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。