CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Dual Compensation Residual Networks for Class Imbalanced Learning
Hou, Ruibing1,2; Chang, Hong1,2; Ma, Bingpeng3; Shan, Shiguang1,2; Chen, Xilin1,2
2023-10-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号45期号:10页码:11733-11752
摘要Learning generalizable representation and classifier for class-imbalanced data is challenging for data-driven deep models. Most studies attempt to re-balance the data distribution, which is prone to overfitting on tail classes and underfitting on head classes. In this work, we propose Dual Compensation Residual Networks to better fit both tail and head classes. First, we propose dual Feature Compensation Module (FCM) and Logit Compensation Module (LCM) to alleviate the overfitting issue. The design of these two modules is based on the observation: an important factor causing overfitting is that there is severe feature drift between training and test data on tail classes. In details, the test features of a tail category tend to drift towards feature cloud of multiple similar head categories. So FCM estimates a multi-mode feature drift direction for each tail category and compensate for it. Furthermore, LCM translates the deterministic feature drift vector estimated by FCM along intra-class variations, so as to cover a larger effective compensation space, thereby better fitting the test features. Second, we propose a Residual Balanced Multi-Proxies Classifier (RBMC) to alleviate the under-fitting issue. Motivated by the observation that re-balancing strategy hinders the classifier from learning sufficient head knowledge and eventually causes underfitting, RBMC utilizes uniform learning with a residual path to facilitate classifier learning. Comprehensive experiments on Long-tailed and Class-Incremental benchmarks validate the efficacy of our method.
关键词Class imbalance learning class-incremental learning residual path
DOI10.1109/TPAMI.2023.3275585
收录类别SCI
语种英语
资助项目National Key Ramp;D Program of China ; Natural Science Foundation of China(NSFC)[2018AAA0102402] ; Natural Science Foundation of China(NSFC)[61976203] ; Natural Science Foundation of China(NSFC)[62276246] ; National Postdoctoral Program for Innovative Talents[U19B2036] ; [BX20220310]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001068816800018
出版者IEEE COMPUTER SOC
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21140
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Hou, Ruibing
作者单位1.Chinese Acad Sci, Inst Comp Technol ICT, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 5100049, Peoples R China
3.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Hou, Ruibing,Chang, Hong,Ma, Bingpeng,et al. Dual Compensation Residual Networks for Class Imbalanced Learning[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2023,45(10):11733-11752.
APA Hou, Ruibing,Chang, Hong,Ma, Bingpeng,Shan, Shiguang,&Chen, Xilin.(2023).Dual Compensation Residual Networks for Class Imbalanced Learning.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,45(10),11733-11752.
MLA Hou, Ruibing,et al."Dual Compensation Residual Networks for Class Imbalanced Learning".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 45.10(2023):11733-11752.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hou, Ruibing]的文章
[Chang, Hong]的文章
[Ma, Bingpeng]的文章
百度学术
百度学术中相似的文章
[Hou, Ruibing]的文章
[Chang, Hong]的文章
[Ma, Bingpeng]的文章
必应学术
必应学术中相似的文章
[Hou, Ruibing]的文章
[Chang, Hong]的文章
[Ma, Bingpeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。