CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
PRADA: Practical Black-box Adversarial Attacks against Neural Ranking Models
Wu, Chen1,2; Zhang, Ruqing1,2; Guo, Jiafeng1,2; De Rijke, Maarten3; Fan, Yixing2,4; Cheng, Xueqi2,4
2023-10-01
发表期刊ACM TRANSACTIONS ON INFORMATION SYSTEMS
ISSN1046-8188
卷号41期号:4页码:27
摘要Neural ranking models (NRMs) have shown remarkable success in recent years, especially with pre-trained language models. However, deep neural models are notorious for their vulnerability to adversarial examples. Adversarial attacks may become a new type of web spamming technique given our increased reliance on neural information retrieval models. Therefore, it is important to study potential adversarial attacks to identify vulnerabilities of NRMs before they are deployed. In this article, we introduce the Word Substitution Ranking Attack (WSRA) task against NRMs, which aims at promoting a target document in rankings by adding adversarial perturbations to its text. We focus on the decision-based black-box attack setting, where the attackers cannot directly get access to the model information, but can only query the target model to obtain the rank positions of the partial retrieved list. This attack setting is realistic in real-world search engines. We propose a novel Pseudo Relevance-based ADversarial ranking Attack method (PRADA) that learns a surrogate model based on Pseudo Relevance Feedback (PRF) to generate gradients for finding the adversarial perturbations. Experiments on two web search benchmark datasets show that PRADA can outperform existing attack strategies and successfully fool the NRM with small indiscernible perturbations of text.
关键词Adversarial attack decision-based black-box attack setting neural ranking models
DOI10.1145/3576923
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[62006218] ; National Natural Science Foundation of China (NSFC)[61902381] ; Youth Innovation Promotion Association CAS[20144310] ; Youth Innovation Promotion Association CAS[2021100] ; Young Elite Scientist Sponsorship Program by CAST[YESS20200121] ; Lenovo-CAS Joint Lab Youth Scientist Project ; Hybrid Intelligence Center, a 10-year program - Dutch Ministry of Education, Culture and Science through the Netherlands Organisation for Scientific Research
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:001068685300008
出版者ASSOC COMPUTING MACHINERY
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21124
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Guo, Jiafeng
作者单位1.Inst Comp Technol Acad Sci, Beijing, Peoples R China
2.Univ Chinese Acad Sci, 6 Kexueyuan South Rd, Beijing 100190, Peoples R China
3.Univ Amsterdam, NL-1012WX Amsterdam, Netherlands
4.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wu, Chen,Zhang, Ruqing,Guo, Jiafeng,et al. PRADA: Practical Black-box Adversarial Attacks against Neural Ranking Models[J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS,2023,41(4):27.
APA Wu, Chen,Zhang, Ruqing,Guo, Jiafeng,De Rijke, Maarten,Fan, Yixing,&Cheng, Xueqi.(2023).PRADA: Practical Black-box Adversarial Attacks against Neural Ranking Models.ACM TRANSACTIONS ON INFORMATION SYSTEMS,41(4),27.
MLA Wu, Chen,et al."PRADA: Practical Black-box Adversarial Attacks against Neural Ranking Models".ACM TRANSACTIONS ON INFORMATION SYSTEMS 41.4(2023):27.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Chen]的文章
[Zhang, Ruqing]的文章
[Guo, Jiafeng]的文章
百度学术
百度学术中相似的文章
[Wu, Chen]的文章
[Zhang, Ruqing]的文章
[Guo, Jiafeng]的文章
必应学术
必应学术中相似的文章
[Wu, Chen]的文章
[Zhang, Ruqing]的文章
[Guo, Jiafeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。