CSpace  > 中国科学院计算技术研究所期刊论文
Dadu-SV: Accelerate Stereo Vision Processing on NPU
Min, Feng1; Wang, Ying2; Xu, Haobo1; Huang, Junpei3; Wang, Yujie1; Zou, Xingqi1; Lu, Meixuan1; Han, Yinhe
2022-12-01
发表期刊IEEE EMBEDDED SYSTEMS LETTERS
ISSN1943-0663
卷号14期号:4页码:191-194
摘要Binocular vision and neural networks (CNNs) are widely seen in modern intelligent vision processing systems, such as robotics, autonomous vehicles, and AR gadgets. However, both the classic semiglobal matching (SGM) and deep CNNs entail substantial computing resource to reach the performance goal. Traditional embedded CPU/graphic processor unit (GPU) cannot simultaneously meet the processing speed and energy requirement, while the specialized circuits dedicated to SGM and CNN processing, respectively, will take considerable hardware and development costs. However, as the popularity of deep learning, neural processing units (NPUs) become prevalent in many embedded and edge devices, which possess high throughput computing power to deal with the matrix operations involved by neural networks. In this work, we attempt to take advantage of the neural processing architectures integrated in SoC chips to accelerate the SGM process, so that the hardware resources will be better utilized instead of investing more resources to create specialized SGM components. Thereby, this letter first deploys SGM on NPU by converting the incompatible operations into the neural-computing flow, and a configurable neural processing element is proposed to flexibly support various vector operation sequences. Then, a hybrid dataflow scheduler and the corresponding hardware modification are introduced to accelerate the cost processing, improving hardware utilization and on-chip memory footprint and access. Our solution runs at 45 fps for an image size of $640\times 480$ , with 128 disparity levels. The speed-energy efficiency is $52\times $ better than the GPU (Jetson TX1) solution with negligible additional hardware overhead and accuracy loss.
关键词Hardware acceleration neural computing neural processing unit (NPU) semiglobal matching (SGM) stereo vision
DOI10.1109/LES.2022.3162859
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[62025404] ; National Natural Science Foundation of China (NSFC)[61834006] ; National Natural Science Foundation of China (NSFC)[61874124] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDC05030100] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDB4400000] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDPB12]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering ; Engineering, Electrical & Electronic
WOS记录号WOS:000890850400008
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/20274
专题中国科学院计算技术研究所期刊论文
通讯作者Wang, Ying; Xu, Haobo
作者单位1.Chinese Acad Sci, Inst Comp Technol, Res Ctr Intelligent Comp Syst, Beijing 100045, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
3.Univ Sci & Technol China, Sch Microelect, Hefei 230026, Anhui, Peoples R China
推荐引用方式
GB/T 7714
Min, Feng,Wang, Ying,Xu, Haobo,et al. Dadu-SV: Accelerate Stereo Vision Processing on NPU[J]. IEEE EMBEDDED SYSTEMS LETTERS,2022,14(4):191-194.
APA Min, Feng.,Wang, Ying.,Xu, Haobo.,Huang, Junpei.,Wang, Yujie.,...&Han, Yinhe.(2022).Dadu-SV: Accelerate Stereo Vision Processing on NPU.IEEE EMBEDDED SYSTEMS LETTERS,14(4),191-194.
MLA Min, Feng,et al."Dadu-SV: Accelerate Stereo Vision Processing on NPU".IEEE EMBEDDED SYSTEMS LETTERS 14.4(2022):191-194.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Min, Feng]的文章
[Wang, Ying]的文章
[Xu, Haobo]的文章
百度学术
百度学术中相似的文章
[Min, Feng]的文章
[Wang, Ying]的文章
[Xu, Haobo]的文章
必应学术
必应学术中相似的文章
[Min, Feng]的文章
[Wang, Ying]的文章
[Xu, Haobo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。