CSpace  > 中国科学院计算技术研究所期刊论文
AsyLink: user identity linkage from text to geo-location via sparse labeled data
Shao, Jiangli1,2; Wang, Yongqing1; Gao, Hao1,2; Shi, Boshen1,2; Shen, Huawei1; Cheng, Xueqi1
2023
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号515页码:174-184
摘要User Identity Linkage (UIL) aims to reveal the correspondence among account pairs across different social platforms. It has been a popular but challenging task in recent years as complex application scenarios have emerged. Existing UIL methods mainly formalize a classification problem based on symmetric infor-mation, but these techniques are hard to apply to asymmetric, sparsely labeled, and imbalanced data. To combat the challenges, we propose a novel UIL framework (AsyLink) with asymmetric information in text and geographic forms. AsyLink first uses topic modeling technologies to associate words and locations, where external text-location pairs can be conveniently introduced to reduce bias caused by sparse link-age labels. Then the user-user interactive tensors are constructed as the basis for linking. Using 3D con-volutional neural networks, matching patterns in user-user interactive tensors are captured, and final predictions are based on the extracted features. Meanwhile, instead of regular classification loss, the ranking loss is introduced to predict the best answer among candidates, which is conducive to imbal-anced classification. Experiments performed on four real-world datasets indicate that AsyLink achieves state-of-the-art performances and has great potential for real-world applications. (c) 2022 Elsevier B.V. All rights reserved.
关键词User identity linkage User -generated text Geo-location
DOI10.1016/j.neucom.2022.10.027
收录类别SCI
语种英语
资助项目National Natural Science Founda-tion of China ; National Social Science Fund of China ; Beijing Nova Program ; China Postdoctoral Science Foundation ; [U21B2046,61902380] ; [19ZDA329] ; [Z201100006820061] ; [2022M713206]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000877611700010
出版者ELSEVIER
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/20237
专题中国科学院计算技术研究所期刊论文
通讯作者Wang, Yongqing
作者单位1.Chinese Acad Sci, Inst Comp Technol, Data Intelligence Syst Res Ctr, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Shao, Jiangli,Wang, Yongqing,Gao, Hao,et al. AsyLink: user identity linkage from text to geo-location via sparse labeled data[J]. NEUROCOMPUTING,2023,515:174-184.
APA Shao, Jiangli,Wang, Yongqing,Gao, Hao,Shi, Boshen,Shen, Huawei,&Cheng, Xueqi.(2023).AsyLink: user identity linkage from text to geo-location via sparse labeled data.NEUROCOMPUTING,515,174-184.
MLA Shao, Jiangli,et al."AsyLink: user identity linkage from text to geo-location via sparse labeled data".NEUROCOMPUTING 515(2023):174-184.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shao, Jiangli]的文章
[Wang, Yongqing]的文章
[Gao, Hao]的文章
百度学术
百度学术中相似的文章
[Shao, Jiangli]的文章
[Wang, Yongqing]的文章
[Gao, Hao]的文章
必应学术
必应学术中相似的文章
[Shao, Jiangli]的文章
[Wang, Yongqing]的文章
[Gao, Hao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。