CSpace  > 中国科学院计算技术研究所期刊论文
HIRE: Distilling high-order relational knowledge from heterogeneous graph neural networks
Liu, Jing1,2; Zheng, Tongya3; Hao, Qinfen1
2022-10-01
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号507页码:67-83
摘要Researchers have recently proposed plenty of heterogeneous graph neural networks (HGNNs) due to the ubiquity of heterogeneous graphs in both academic and industrial areas. Instead of pursuing a more powerful HGNN model, in this paper, we are interested in devising a versatile plug-and-play module, which accounts for distilling relational knowledge from pre-trained HGNNs. To the best of our knowledge, we are the first to propose a HIgh-order RElational (HIRE) knowledge distillation framework on heterogeneous graphs, which can significantly boost the prediction performance regardless of model architectures of HGNNs. Concretely, our HIRE framework initially performs first-order node-level knowledge distillation, which encodes the semantics of the teacher HGNN with its prediction logits. Meanwhile, the second-order relation-level knowledge distillation imitates the relational correlation between node embeddings of different types generated by the teacher HGNN. Extensive experiments on various popular HGNNs models and three real-world heterogeneous graphs demonstrate that our method obtains consistent and considerable performance enhancement, proving its effectiveness and generalization ability. (c) 2022 Elsevier B.V. All rights reserved.
关键词Graph embedding Heterogeneous graph Graph neural networks Knowledge distillation
DOI10.1016/j.neucom.2022.08.022
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000911757100006
出版者ELSEVIER
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/20014
专题中国科学院计算技术研究所期刊论文
通讯作者Hao, Qinfen
作者单位1.Chinese Acad Sci, Inst Comp Technol, SKLP, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Peoples R China
推荐引用方式
GB/T 7714
Liu, Jing,Zheng, Tongya,Hao, Qinfen. HIRE: Distilling high-order relational knowledge from heterogeneous graph neural networks[J]. NEUROCOMPUTING,2022,507:67-83.
APA Liu, Jing,Zheng, Tongya,&Hao, Qinfen.(2022).HIRE: Distilling high-order relational knowledge from heterogeneous graph neural networks.NEUROCOMPUTING,507,67-83.
MLA Liu, Jing,et al."HIRE: Distilling high-order relational knowledge from heterogeneous graph neural networks".NEUROCOMPUTING 507(2022):67-83.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Jing]的文章
[Zheng, Tongya]的文章
[Hao, Qinfen]的文章
百度学术
百度学术中相似的文章
[Liu, Jing]的文章
[Zheng, Tongya]的文章
[Hao, Qinfen]的文章
必应学术
必应学术中相似的文章
[Liu, Jing]的文章
[Zheng, Tongya]的文章
[Hao, Qinfen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。