CSpace  > 中国科学院计算技术研究所期刊论文
Lightweight real-time stereo matching algorithm for AI chips
Liu, Yi1; Wang, Wenhao2,3; Xu, Xintao1; Guo, Xiaozhou1,3; Gong, Guoliang1,3; Lu, Huaxiang1,3,4,5
2023-02-01
发表期刊COMPUTER COMMUNICATIONS
ISSN0140-3664
卷号199页码:210-217
摘要AI chips have developed rapidly and achieved remarkable acceleration effects in the corresponding algorithm field in recent years. However, deep learning algorithms are changing rapidly, including many operators that AI chips and inference frameworks cannot use in the short term. To solve the problem that it is challenging to deploy a stereo matching algorithm based on binocular vision on AI chips, this paper proposes a multi-stage unsupervised lightweight real-time depth estimation algorithm for AI chips called TradNet. TradNet combines the traditional matching algorithm with a convolutional neural network and uses convolution directly supported by AI chips to realize the structure of the traditional matching algorithm. TradNet is composed of operators directly supported by current AI chips, which reduces the computational complexity of the algorithm, and greatly improves the compatibility of the stereo matching algorithm with existing AI chips. Compared with the deep learning-based multi-stage binocular disparity algorithm AnyNet, the accuracy is improved by 5.12%, and the inference speed is only 12.7%. Compared with the matching-based binocular disparity algorithm BM, the accuracy is improved by 25.24%, and the inference speed is only 48.7%. Our final model can process 1280x720 resolution images within a range of 60-80 FPS on an NVIDIA TITAN Xp. It achieves 28FPS on a 1TOPS (Tera Operations Per Second) custom AI chip, and the power consumption is 0.88 W.
关键词AI chips Stereo matching Lightweight network Unsupervised learning Multi-stage stereo matching
DOI10.1016/j.comcom.2022.06.018
收录类别SCI
语种英语
资助项目Beijing Academy of Artificial Intelligence (BAAI) ; CAS Strategic Leading Science and Technology Project[XDA27040303] ; CAS Strategic Leading Science and Technology Project[XDA18040400] ; CAS Strategic Leading Science and Technology Project[XDB44000000] ; National Natural Science Foundation of China[U19A 2080] ; National Natural Science Foundation of China[U1936106] ; High Technology Project[31513070501] ; High Technology Project[1916312ZD0090-2201]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000916921000001
出版者ELSEVIER
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/20011
专题中国科学院计算技术研究所期刊论文
通讯作者Gong, Guoliang
作者单位1.Chinese Acad Sci, Inst Semicond, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing, Peoples R China
5.Beijing Key Lab Semicond Neural Network Intellige, Beijing, Peoples R China
6.Univ Sci & Technol China, Hefei, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yi,Wang, Wenhao,Xu, Xintao,et al. Lightweight real-time stereo matching algorithm for AI chips[J]. COMPUTER COMMUNICATIONS,2023,199:210-217.
APA Liu, Yi,Wang, Wenhao,Xu, Xintao,Guo, Xiaozhou,Gong, Guoliang,&Lu, Huaxiang.(2023).Lightweight real-time stereo matching algorithm for AI chips.COMPUTER COMMUNICATIONS,199,210-217.
MLA Liu, Yi,et al."Lightweight real-time stereo matching algorithm for AI chips".COMPUTER COMMUNICATIONS 199(2023):210-217.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Yi]的文章
[Wang, Wenhao]的文章
[Xu, Xintao]的文章
百度学术
百度学术中相似的文章
[Liu, Yi]的文章
[Wang, Wenhao]的文章
[Xu, Xintao]的文章
必应学术
必应学术中相似的文章
[Liu, Yi]的文章
[Wang, Wenhao]的文章
[Xu, Xintao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。