CSpace  > 中国科学院计算技术研究所期刊论文
On-Line Fault Protection for ReRAM-Based Neural Networks
Li, Wen1,2; Wang, Ying1,2; Liu, Cheng1,2; He, Yintao1,2; Liu, Lian1,2; Li, Huawei1,3; Li, Xiaowei1,2
2023-02-01
发表期刊IEEE TRANSACTIONS ON COMPUTERS
ISSN0018-9340
卷号72期号:2页码:423-437
摘要The emerging Resistive RAM (ReRAM) technology significantly boosts the performance and the energy efficiency of the deep learning accelerators (DLAs) via the Computing-in-Memory (CiM) architecture. However, ReRAM-based DLA also suffers a high occurrence rate of memory faults. How to detect and protect against the faults in ReRAM devices poses great challenges to ReRAM-based DLA design. In this work, we propose RRAMedy, an in-situ fault detection and network remedy framework for ReRAM-based DLAs. With the proposed Adversarial Example Testing, which is a lifetime on-device and on-line fault detection technique, it achieves high detection coverage of both hard faults and soft faults at a low run-time cost. In addition, it employs an edge-cloud collaborative model retraining method to tolerate the detected faults by leveraging the inherent fault-adaptive capability of DNNs. Meanwhile, to enable in-situ model remedy when the cloud assistance is absent due to security or overhead issues, we propose to accelerate the fault-masking retraining process on edge devices with parallelized Knowledge Transfer. Our experimental results show that the proposed fault detection technique achieves high fault detection accuracy and delivers real-time testing performance. Meanwhile, the proposed retraining approach greatly alleviates the accuracy degradation problem and achieves excellent performance speedups over the baselines.
关键词Training Fault detection Computational modeling Image edge detection Memristors Neural networks Kernel Deep neural network hard fault ReRAM reliability soft fault
DOI10.1109/TC.2022.3160345
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2020YFB1600201] ; National Natural Science Foundation of China (NSFC)[62090024] ; National Natural Science Foundation of China (NSFC)[61874124] ; National Natural Science Foundation of China (NSFC)[61876173] ; Zhejiang Lab[2021PC0AC01]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号WOS:000917782600010
出版者IEEE COMPUTER SOC
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19936
专题中国科学院计算技术研究所期刊论文
通讯作者Wang, Ying
作者单位1.Chinese Acad Sci, Inst Comp Technol, SKLCA, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
3.Peng Cheng Lab, Shenzhen 518066, Peoples R China
推荐引用方式
GB/T 7714
Li, Wen,Wang, Ying,Liu, Cheng,et al. On-Line Fault Protection for ReRAM-Based Neural Networks[J]. IEEE TRANSACTIONS ON COMPUTERS,2023,72(2):423-437.
APA Li, Wen.,Wang, Ying.,Liu, Cheng.,He, Yintao.,Liu, Lian.,...&Li, Xiaowei.(2023).On-Line Fault Protection for ReRAM-Based Neural Networks.IEEE TRANSACTIONS ON COMPUTERS,72(2),423-437.
MLA Li, Wen,et al."On-Line Fault Protection for ReRAM-Based Neural Networks".IEEE TRANSACTIONS ON COMPUTERS 72.2(2023):423-437.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Wen]的文章
[Wang, Ying]的文章
[Liu, Cheng]的文章
百度学术
百度学术中相似的文章
[Li, Wen]的文章
[Wang, Ying]的文章
[Liu, Cheng]的文章
必应学术
必应学术中相似的文章
[Li, Wen]的文章
[Wang, Ying]的文章
[Liu, Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。