CSpace  > 中国科学院计算技术研究所期刊论文
Location-aware convolutional neural networks for graph classification
Wang, Zhaohui1,3; Cao, Qi1; Shen, Huawei1,3,4; Xu, Bingbing1; Cen, Keting1,3; Cheng, Xueqi2,3
2022-11-01
发表期刊NEURAL NETWORKS
ISSN0893-6080
卷号155页码:74-83
摘要Graph patterns play a critical role in various graph classification tasks, e.g., chemical patterns often determine the properties of molecular graphs. Researchers devote themselves to adapting Convolutional Neural Networks (CNNs) to graph classification due to their powerful capability in pattern learning. The varying numbers of neighbor nodes and the lack of canonical order of nodes on graphs pose challenges in constructing receptive fields for CNNs. Existing methods generally follow a heuristic ranking-based framework, which constructs receptive fields by selecting a fixed number of nodes and dropping the others according to predetermined rules. However, such methods may lose important structure information through dropping nodes, and they also cannot learn task-oriented graph patterns. In this paper, we propose a Location learning-based Convolutional Neural Networks (LCNN) for graph classification. LCNN constructs receptive fields by learning the location of each node according to its embedding that contains structures and features information, then standard CNNs are applied to capture graph patterns. Such a location learning mechanism not only retains the information of all nodes, but also provides the ability for task-oriented pattern learning. Experimental results show the effectiveness of the proposed LCNN, and visualization results further illustrate the valid pattern learning ability of our method for graph classification. (c) 2022 Elsevier Ltd. All rights reserved.
关键词Graph classification Convolutional neural networks Location-aware
DOI10.1016/j.neunet.2022.07.035
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[U21B2046] ; National Natural Science Foundation of China[62102402] ; National Key R&D Program of China[2020AAA0105200]
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:000884681600005
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19861
专题中国科学院计算技术研究所期刊论文
通讯作者Shen, Huawei
作者单位1.Chinese Acad Sci, Inst Comp Technol, Data Intelligence Syst Res Ctr, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Beijing Acad Artificial Intelligence, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Zhaohui,Cao, Qi,Shen, Huawei,et al. Location-aware convolutional neural networks for graph classification[J]. NEURAL NETWORKS,2022,155:74-83.
APA Wang, Zhaohui,Cao, Qi,Shen, Huawei,Xu, Bingbing,Cen, Keting,&Cheng, Xueqi.(2022).Location-aware convolutional neural networks for graph classification.NEURAL NETWORKS,155,74-83.
MLA Wang, Zhaohui,et al."Location-aware convolutional neural networks for graph classification".NEURAL NETWORKS 155(2022):74-83.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Zhaohui]的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
百度学术
百度学术中相似的文章
[Wang, Zhaohui]的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
必应学术
必应学术中相似的文章
[Wang, Zhaohui]的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。