CSpace  > 中国科学院计算技术研究所期刊论文
Multiagent Reinforcement Learning With Heterogeneous Graph Attention Network
Du, Wei1,2; Ding, Shifei1,2; Zhang, Chenglong1,2; Shi, Zhongzhi3
2022-11-04
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
页码10
摘要Most recent research on multiagent reinforcement learning (MARL) has explored how to deploy cooperative policies for homogeneous agents. However, realistic multiagent environments may contain heterogeneous agents that have different attributes or tasks. The heterogeneity of the agents and the diversity of relationships cause the learning of policy excessively tough. To tackle this difficulty, we present a novel method that employs a heterogeneous graph attention network to model the relationships between heterogeneous agents. The proposed method can generate an integrated feature representation for each agent by hierarchically aggregating latent feature information of neighbor agents, with the importance of the agent level and the relationship level being entirely considered. The method is agnostic to specific MARL methods and can be flexibly integrated with diverse value decomposition methods. We conduct experiments in predator-prey and StarCraft Multiagent Challenge (SMAC) environments, and the empirical results demonstrate that the performance of our method is superior to existing methods in several heterogeneous scenarios.
关键词Reinforcement learning Multi-agent systems Aggregates Task analysis Scalability Marine vehicles Learning systems Graph attention network heterogeneous agents multiagent reinforcement learning (MARL) relationship-level attention
DOI10.1109/TNNLS.2022.3215774
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61976216] ; National Natural Science Foundation of China[62276265]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000881975400001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:15[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19856
专题中国科学院计算技术研究所期刊论文
通讯作者Ding, Shifei
作者单位1.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
2.China Univ Min & Technol, Minist Educ, Mine Digitizat Engn Res Ctr, Xuzhou 221116, Jiangsu, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Du, Wei,Ding, Shifei,Zhang, Chenglong,et al. Multiagent Reinforcement Learning With Heterogeneous Graph Attention Network[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2022:10.
APA Du, Wei,Ding, Shifei,Zhang, Chenglong,&Shi, Zhongzhi.(2022).Multiagent Reinforcement Learning With Heterogeneous Graph Attention Network.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,10.
MLA Du, Wei,et al."Multiagent Reinforcement Learning With Heterogeneous Graph Attention Network".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2022):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Du, Wei]的文章
[Ding, Shifei]的文章
[Zhang, Chenglong]的文章
百度学术
百度学术中相似的文章
[Du, Wei]的文章
[Ding, Shifei]的文章
[Zhang, Chenglong]的文章
必应学术
必应学术中相似的文章
[Du, Wei]的文章
[Ding, Shifei]的文章
[Zhang, Chenglong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。