CSpace  > 中国科学院计算技术研究所期刊论文
Enabling In-Network Floating-Point Arithmetic for Efficient Computation Offloading
Cui, Penglai1,2; Pan, Heng1,3; Li, Zhenyu1,3; Zhang, Penghao1,2; Miao, Tianhao1,2; Zhou, Jianer4; Guan, Hongtao1; Xie, Gaogang5
2022-12-01
发表期刊IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
ISSN1045-9219
卷号33期号:12页码:4918-4934
摘要Programmable switches are recently used for accelerating data-intensive distributed applications. Some computational tasks, traditionally performed on servers in data centers, are offloaded into the network on programmable switches. These tasks may require the support of on-the-fly floating-point operations. Unfortunately, programmable switches are restricted to simple integer arithmetic operations. Existing systems circumvent this restriction by converting floats to integers or relying on local CPUs of switches, incurring extra processing delayed and accuracy loss. To address this gap, we propose NetFC, a table-lookup method to achieve on-the-fly in-network floating-point arithmetic operations nearly without accuracy loss. Specifically, NetFC utilizes logarithm projection and transformation to convert the original huge table enumerating all operands and results into several much smaller tables that can fit into the data plane of programmable switches. To cope with the table inflation problem on 32-bit floats, we also propose an approximation method that further breaks the large tables into smaller ones. In addition, NetFC leverages two optimizations to improve accuracy and reduce on-chip memory consumption. We use both synthetic and real-life datasets to evaluate NetFC. The experimental results show that the average accuracy of NetFC is above 99.9% with only 448KB memory consumption for 16-bit floats and 99.1% with 496KB memory consumption for 32-bit floats. Furthermore, we integrate NetFC into two distributed applications and two in-network telemetry systems to show its effectiveness in further improving the performance.
关键词Open area test sites Arithmetic Memory management Task analysis Training Standards Servers In-network computation computation offloading floating-point operation
DOI10.1109/TPDS.2022.3208425
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2020YFB1805600] ; National Natural Science Foundation of China[U20A20180] ; National Natural Science Foundation of China[62002344] ; Beijing Natural Science Foundation[JQ20024]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000864178200003
出版者IEEE COMPUTER SOC
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19793
专题中国科学院计算技术研究所期刊论文
通讯作者Li, Zhenyu
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Purple Mt Labs, Nanjing 211111, Peoples R China
4.Southern Univ Sci & Technol, Shenzhen 518055, Peoples R China
5.Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Cui, Penglai,Pan, Heng,Li, Zhenyu,et al. Enabling In-Network Floating-Point Arithmetic for Efficient Computation Offloading[J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,2022,33(12):4918-4934.
APA Cui, Penglai.,Pan, Heng.,Li, Zhenyu.,Zhang, Penghao.,Miao, Tianhao.,...&Xie, Gaogang.(2022).Enabling In-Network Floating-Point Arithmetic for Efficient Computation Offloading.IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,33(12),4918-4934.
MLA Cui, Penglai,et al."Enabling In-Network Floating-Point Arithmetic for Efficient Computation Offloading".IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 33.12(2022):4918-4934.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cui, Penglai]的文章
[Pan, Heng]的文章
[Li, Zhenyu]的文章
百度学术
百度学术中相似的文章
[Cui, Penglai]的文章
[Pan, Heng]的文章
[Li, Zhenyu]的文章
必应学术
必应学术中相似的文章
[Cui, Penglai]的文章
[Pan, Heng]的文章
[Li, Zhenyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。