CSpace  > 中国科学院计算技术研究所期刊论文
Bias oriented unbiased data augmentation for cross-bias representation learning
Li, Lei1,2; Tang, Fan1,2; Cao, Juan1,2; Li, Xirong3; Wang, Danding1,2
2022-10-25
发表期刊MULTIMEDIA SYSTEMS
ISSN0942-4962
页码14
摘要The biased cues in the training data may build strong connections between specific targets and unexpected concepts, leading the learned representations could not be applied to real-world data that does not contain the same biased cues. To learn cross-bias representations which can generalize on unbiased datasets by only using biased data, researchers focus on reducing the influence of biased cues through unbiased sampling or augmentation on the basis of artificial experience. However, the distributions of biased cues in the dataset are neglected, which limits the performance of these methods. In this paper, we propose a bias oriented data augmentation to enhance the cross-bias generalization by enlarging "safety" and "unbiasedness" constraints in the training data without manual prior intervention. The safety constraint is proposed to maintain the class-specific information for augmentation while the unbiasedness constraint reduces the statistical correlation of bias information and class labels. Experiments under different biased proportions on four synthetic/real-world datasets show that the proposed approach could improve the performance of other SOTA debiasing approaches (colored MNIST: 0.35-26.14%, corrupted CIFAR10: 3.14-8.44%, BFFHQ: 1.50% and BAR: 1.72%).
关键词Cross-bias generalization Data augmentation Unbiased representation
DOI10.1007/s00530-022-01013-6
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:000871828500001
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19771
专题中国科学院计算技术研究所期刊论文
通讯作者Tang, Fan
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100080, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Renmin Univ China, Beijing 100872, Peoples R China
推荐引用方式
GB/T 7714
Li, Lei,Tang, Fan,Cao, Juan,et al. Bias oriented unbiased data augmentation for cross-bias representation learning[J]. MULTIMEDIA SYSTEMS,2022:14.
APA Li, Lei,Tang, Fan,Cao, Juan,Li, Xirong,&Wang, Danding.(2022).Bias oriented unbiased data augmentation for cross-bias representation learning.MULTIMEDIA SYSTEMS,14.
MLA Li, Lei,et al."Bias oriented unbiased data augmentation for cross-bias representation learning".MULTIMEDIA SYSTEMS (2022):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Lei]的文章
[Tang, Fan]的文章
[Cao, Juan]的文章
百度学术
百度学术中相似的文章
[Li, Lei]的文章
[Tang, Fan]的文章
[Cao, Juan]的文章
必应学术
必应学术中相似的文章
[Li, Lei]的文章
[Tang, Fan]的文章
[Cao, Juan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。