Institute of Computing Technology, Chinese Academy IR
Learning pseudo labels for semi-and-weakly supervised semantic segmentation | |
Wang, Yude1,2; Zhang, Jie1,2; Kan, Meina1,2; Shan, Shiguang1,2,3 | |
2022-12-01 | |
发表期刊 | PATTERN RECOGNITION |
ISSN | 0031-3203 |
卷号 | 132页码:10 |
摘要 | In this paper, we aim to tackle semi-and-weakly supervised semantic segmentation (SWSSS), where many image-level classification labels and a few pixel-level annotations are available. We believe the most crucial point for solving SWSSS is to produce high-quality pseudo labels, and our method deals with it from two perspectives. Firstly, we introduce a class-aware cross entropy (CCE) loss for network training. Compared to conventional cross entropy loss, CCE loss encourages the model to distinguish concurrent classes only and simplifies the learning target of pseudo label generation. Secondly, we propose a progressive cross training (PCT) method to build cross supervision between two networks with a dynamic evaluation mechanism, which progressively introduces high-quality predictions as additional supervision for network training. Our method significantly improves the quality of generated pseudo labels in the regime with extremely limited annotations. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods significantly. The code is released for public access 1 .(c) 2022 Elsevier Ltd. All rights reserved. |
关键词 | Semi -supervised Weakly supervised Semi -and -weakly supervised Semantic segmentation Pseudo label Self-training |
DOI | 10.1016/j.patcog.2022.108925 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2017YFA070 080 0] ; National Natural Science Founda- tion of China[62176251] ; National Natural Science Founda- tion of China[61976219] ; Beijing Nova Program[Z19110 0 0 01119123] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000874844700007 |
出版者 | ELSEVIER SCI LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/19755 |
专题 | 中国科学院计算技术研究所期刊论文 |
通讯作者 | Zhang, Jie |
作者单位 | 1.Chinese Acad Sci, Key Lab Intelligent Informat Proc Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Peng Cheng Natl Lab, Shenzhen 518055, Guangdong, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Yude,Zhang, Jie,Kan, Meina,et al. Learning pseudo labels for semi-and-weakly supervised semantic segmentation[J]. PATTERN RECOGNITION,2022,132:10. |
APA | Wang, Yude,Zhang, Jie,Kan, Meina,&Shan, Shiguang.(2022).Learning pseudo labels for semi-and-weakly supervised semantic segmentation.PATTERN RECOGNITION,132,10. |
MLA | Wang, Yude,et al."Learning pseudo labels for semi-and-weakly supervised semantic segmentation".PATTERN RECOGNITION 132(2022):10. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论