CSpace  > 中国科学院计算技术研究所期刊论文
Learning pseudo labels for semi-and-weakly supervised semantic segmentation
Wang, Yude1,2; Zhang, Jie1,2; Kan, Meina1,2; Shan, Shiguang1,2,3
2022-12-01
发表期刊PATTERN RECOGNITION
ISSN0031-3203
卷号132页码:10
摘要In this paper, we aim to tackle semi-and-weakly supervised semantic segmentation (SWSSS), where many image-level classification labels and a few pixel-level annotations are available. We believe the most crucial point for solving SWSSS is to produce high-quality pseudo labels, and our method deals with it from two perspectives. Firstly, we introduce a class-aware cross entropy (CCE) loss for network training. Compared to conventional cross entropy loss, CCE loss encourages the model to distinguish concurrent classes only and simplifies the learning target of pseudo label generation. Secondly, we propose a progressive cross training (PCT) method to build cross supervision between two networks with a dynamic evaluation mechanism, which progressively introduces high-quality predictions as additional supervision for network training. Our method significantly improves the quality of generated pseudo labels in the regime with extremely limited annotations. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods significantly. The code is released for public access 1 .(c) 2022 Elsevier Ltd. All rights reserved.
关键词Semi -supervised Weakly supervised Semi -and -weakly supervised Semantic segmentation Pseudo label Self-training
DOI10.1016/j.patcog.2022.108925
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2017YFA070 080 0] ; National Natural Science Founda- tion of China[62176251] ; National Natural Science Founda- tion of China[61976219] ; Beijing Nova Program[Z19110 0 0 01119123]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000874844700007
出版者ELSEVIER SCI LTD
引用统计
被引频次:9[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19755
专题中国科学院计算技术研究所期刊论文
通讯作者Zhang, Jie
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Peng Cheng Natl Lab, Shenzhen 518055, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Wang, Yude,Zhang, Jie,Kan, Meina,et al. Learning pseudo labels for semi-and-weakly supervised semantic segmentation[J]. PATTERN RECOGNITION,2022,132:10.
APA Wang, Yude,Zhang, Jie,Kan, Meina,&Shan, Shiguang.(2022).Learning pseudo labels for semi-and-weakly supervised semantic segmentation.PATTERN RECOGNITION,132,10.
MLA Wang, Yude,et al."Learning pseudo labels for semi-and-weakly supervised semantic segmentation".PATTERN RECOGNITION 132(2022):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Yude]的文章
[Zhang, Jie]的文章
[Kan, Meina]的文章
百度学术
百度学术中相似的文章
[Wang, Yude]的文章
[Zhang, Jie]的文章
[Kan, Meina]的文章
必应学术
必应学术中相似的文章
[Wang, Yude]的文章
[Zhang, Jie]的文章
[Kan, Meina]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。