CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Fast and accurate variable batch size convolution neural network training on large scale distributed systems
Hu, Zhongzhe1,2; Xiao, Junmin1; Sun, Ninghui1; Tan, Guangming1
2022-06-06
发表期刊CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE
ISSN1532-0626
页码26
摘要Large-scale distributed convolution neural network (CNN) training brings two performance challenges: model performance and system performance. Large batch size usually leads to model test accuracy loss, which counteracts the benefits of parallel SGD. The existing solutions require massive hyperparameter hand-tuning. To overcome this difficult, we analyze the training process and find that earlier training stages are more sensitive to batch size. Accordingly, we assert that different stages should use different batch size, and propose a variable batch size strategy. In order to remain high test accuracy under larger batch size cases, we design an auto-tuning engine for automatic parameter tuning in the proposed variable batch size strategy. Furthermore, we develop a dataflow implementation approach to achieve the high-throughput CNN training on supercomputer system. Our approach has achieved high generalization performance on SOAT CNN networks. For the ShuffleNet, ResNet-50, and ResNet-101 training with ImageNet-1K dataset, we scale the batch size to 120 K without accuracy loss and to 128 K with only a slight loss. And the dataflow implementation approach achieves 93.5% scaling efficiency on 1024 GPUs compared with the state-of-the-art.
关键词deep learning distributed computing ImageNet-1K large-batch training synchronous SGD
DOI10.1002/cpe.7119
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:000806476800001
出版者WILEY
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19601
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Hu, Zhongzhe
作者单位1.Chinese Acad Sci, Inst Comp Technol, 6 Kexueyuan South Rd, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Hu, Zhongzhe,Xiao, Junmin,Sun, Ninghui,et al. Fast and accurate variable batch size convolution neural network training on large scale distributed systems[J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE,2022:26.
APA Hu, Zhongzhe,Xiao, Junmin,Sun, Ninghui,&Tan, Guangming.(2022).Fast and accurate variable batch size convolution neural network training on large scale distributed systems.CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE,26.
MLA Hu, Zhongzhe,et al."Fast and accurate variable batch size convolution neural network training on large scale distributed systems".CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE (2022):26.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Zhongzhe]的文章
[Xiao, Junmin]的文章
[Sun, Ninghui]的文章
百度学术
百度学术中相似的文章
[Hu, Zhongzhe]的文章
[Xiao, Junmin]的文章
[Sun, Ninghui]的文章
必应学术
必应学术中相似的文章
[Hu, Zhongzhe]的文章
[Xiao, Junmin]的文章
[Sun, Ninghui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。