CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
CGCNImp: a causal graph convolutional network for multivariate time series imputation
Liu, Caizheng1,2; Cui, Guangfan2; Liu, Shenghua1
2022-04-29
发表期刊PEERJ COMPUTER SCIENCE
卷号8页码:23
摘要Background. Multivariate time series data generally contains missing values, which can be an obstacle to subsequent analysis and may compromise downstream applications. One challenge in this endeavor is the presence of the missing values brought about by sensor failure and transmission packet loss. Imputation is the usual remedy in such circumstances. However, in some multivariate time series data, the complex correlation and temporal dependencies, coupled with the non-stationarity of the data, make imputation difficult. Methods. To address this problem, we propose a novel model for multivariate time series imputation called CGCNImp that considers both correlation and temporal dependency modeling. The correlation dependency module leverages neural Granger causality and a GCN to capture the correlation dependencies among different attributes of the time series data, while the temporal dependency module relies on an attention-driven long short term memory (LSTM) and a time lag matrix to learn its dependencies. Missing values and noise are addressed with total variation reconstruction. Results. We conduct thorough empirical analyses on two real-world datasets. Imputation results show that CGCNImp achieves state-of-the-art performance when compared to previous methods.
关键词Multivariate time series imputation Graph causal analysis Graph neural network Deep neural network
DOI10.7717/peerj-cs.966
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of the Chinese Academy of Sciences[XDA19020400] ; National Science Foundation of China[U21B200494]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:000795493600002
出版者PEERJ INC
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19559
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Caizheng
作者单位1.Chinese Acad Sci, Inst Comp Technol, Dept Data Sci, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Dept Comp Sci & Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Liu, Caizheng,Cui, Guangfan,Liu, Shenghua. CGCNImp: a causal graph convolutional network for multivariate time series imputation[J]. PEERJ COMPUTER SCIENCE,2022,8:23.
APA Liu, Caizheng,Cui, Guangfan,&Liu, Shenghua.(2022).CGCNImp: a causal graph convolutional network for multivariate time series imputation.PEERJ COMPUTER SCIENCE,8,23.
MLA Liu, Caizheng,et al."CGCNImp: a causal graph convolutional network for multivariate time series imputation".PEERJ COMPUTER SCIENCE 8(2022):23.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Caizheng]的文章
[Cui, Guangfan]的文章
[Liu, Shenghua]的文章
百度学术
百度学术中相似的文章
[Liu, Caizheng]的文章
[Cui, Guangfan]的文章
[Liu, Shenghua]的文章
必应学术
必应学术中相似的文章
[Liu, Caizheng]的文章
[Cui, Guangfan]的文章
[Liu, Shenghua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。