CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Characterizing multi-domain false news and underlying user effects on Chinese Weibo
Sheng, Qiang1,2; Cao, Juan1,2; Bernard, H. Russell3; Shu, Kai4; Li, Jintao1; Liu, Huan5
2022-07-01
发表期刊INFORMATION PROCESSING & MANAGEMENT
ISSN0306-4573
卷号59期号:4页码:18
摘要False news that spreads on social media has proliferated over the past years and has led to multi-aspect threats in the real world. While there are studies of false news on specific domains (like politics or health care), little work is found comparing false news across domains. In this article, we investigate false news across nine domains on Weibo, the largest Twitter-like social media platform in China, from 2009 to 2019. The newly collected data comprise 44,728 posts in the nine domains, published by 40,215 users, and reposted over 3.4 million times. Based on the distributions and spreads of the multi-domain dataset, we observe that false news in domains that are close to daily life like health and medicine generated more posts but diffused less effectively than those in other domains like politics, and that political false news had the most effective capacity for diffusion. The widely diffused false news posts on Weibo were associated strongly with certain types of users -by gender, age, etc. Further, these posts provoked strong emotions in the reposts and diffused further with the active engagement of false-news starters. Our findings have the potential to help design false news detection systems in suspicious news discovery, veracity prediction, and display and explanation. The comparison of the findings on Weibo with those of existing work demonstrates nuanced patterns, suggesting the need for more research on data from diverse platforms, countries, or languages to tackle the global issue of false news. The code and new anonymized dataset are available at https://github.com/ICTMCG/Characterizing-Weibo-Multi-Domain-False-News.
关键词Multi-domain False news User effects Social media Weibo
DOI10.1016/j.ipm.2022.102959
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2021AAA0140203] ; Zhejiang Provincial Key Research and Development Program of China[2021C01164]
WOS研究方向Computer Science ; Information Science & Library Science
WOS类目Computer Science, Information Systems ; Information Science & Library Science
WOS记录号WOS:000832363100007
出版者ELSEVIER SCI LTD
引用统计
被引频次:16[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19479
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cao, Juan
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Arizona State Univ, Inst Social Sci Res, Tempe, AZ USA
4.IIT, Dept Comp Sci, Chicago, IL 60616 USA
5.Arizona State Univ, Comp Sci & Engn, Tempe, AZ USA
推荐引用方式
GB/T 7714
Sheng, Qiang,Cao, Juan,Bernard, H. Russell,et al. Characterizing multi-domain false news and underlying user effects on Chinese Weibo[J]. INFORMATION PROCESSING & MANAGEMENT,2022,59(4):18.
APA Sheng, Qiang,Cao, Juan,Bernard, H. Russell,Shu, Kai,Li, Jintao,&Liu, Huan.(2022).Characterizing multi-domain false news and underlying user effects on Chinese Weibo.INFORMATION PROCESSING & MANAGEMENT,59(4),18.
MLA Sheng, Qiang,et al."Characterizing multi-domain false news and underlying user effects on Chinese Weibo".INFORMATION PROCESSING & MANAGEMENT 59.4(2022):18.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sheng, Qiang]的文章
[Cao, Juan]的文章
[Bernard, H. Russell]的文章
百度学术
百度学术中相似的文章
[Sheng, Qiang]的文章
[Cao, Juan]的文章
[Bernard, H. Russell]的文章
必应学术
必应学术中相似的文章
[Sheng, Qiang]的文章
[Cao, Juan]的文章
[Bernard, H. Russell]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。