CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning All Dynamics: Traffic Forecasting via Locality-Aware Spatio-Temporal Joint Transformer
Fang, Yuchen1; Zhao, Fang1; Qin, Yanjun1; Luo, Haiyong2; Wang, Chenxing1
2022-08-16
发表期刊IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
ISSN1524-9050
页码14
摘要Forecasting traffic flow and speed in the urban is important for many applications, ranging from the intelligent navigation of map applications to congestion relief of city management systems. Therefore, mining the complex spatio-temporal correlations in the traffic data to accurately predict traffic is essential for the community. However, previous studies that combined the graph convolution network or self-attention mechanism with deep time series models (e.g., the recurrent neural network) can only capture spatial dependencies in each time slot and temporal dependencies in each sensor, ignoring the spatial and temporal correlations across different time slots and sensors. Besides, the state-of-the-art Transformer architecture used in previous methods is insensitive to local spatio-temporal contexts, which is hard to suit with traffic forecasting. To solve the above two issues, we propose a novel deep learning model for traffic forecasting, named Locality-aware spatio-temporal joint Transformer (Lastjormer), which elaborately designs a spatio-temporal joint attention in the Transformer architecture to capture all dynamic dependencies in the traffic data. Specifically, our model utilizes the dot-product self-attention on sensors across many time slots to extract correlations among them and introduces the linear and convolution self-attention mechanism to reduce the computation needs and incorporate local spatio-temporal information. Experiments on three real-world traffic datasets, England, METR-LA, and PEMS-BAY, demonstrate that our Lastjormer achieves state-of-the-art performances on a variety of challenging traffic forecasting benchmarks.
关键词Forecasting Correlation Convolution Roads Transformers Predictive models Task analysis Traffic forecasting spatio-temporal joint transformer diffusion convolution network
DOI10.1109/TITS.2022.3197640
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61872046] ; Beijing Natural Science Foundation[4212024] ; Science and Technology Plan Project of Inner Mongolia Autonomous Region[2019GG328]
WOS研究方向Engineering ; Transportation
WOS类目Engineering, Civil ; Engineering, Electrical & Electronic ; Transportation Science & Technology
WOS记录号WOS:000842745600001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:31[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19451
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhao, Fang; Luo, Haiyong
作者单位1.Beijing Univ Posts & Telecommun, Sch Comp Sci, Natl Pilot Software Engn Sch, Beijing 100876, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Fang, Yuchen,Zhao, Fang,Qin, Yanjun,et al. Learning All Dynamics: Traffic Forecasting via Locality-Aware Spatio-Temporal Joint Transformer[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2022:14.
APA Fang, Yuchen,Zhao, Fang,Qin, Yanjun,Luo, Haiyong,&Wang, Chenxing.(2022).Learning All Dynamics: Traffic Forecasting via Locality-Aware Spatio-Temporal Joint Transformer.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,14.
MLA Fang, Yuchen,et al."Learning All Dynamics: Traffic Forecasting via Locality-Aware Spatio-Temporal Joint Transformer".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS (2022):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fang, Yuchen]的文章
[Zhao, Fang]的文章
[Qin, Yanjun]的文章
百度学术
百度学术中相似的文章
[Fang, Yuchen]的文章
[Zhao, Fang]的文章
[Qin, Yanjun]的文章
必应学术
必应学术中相似的文章
[Fang, Yuchen]的文章
[Zhao, Fang]的文章
[Qin, Yanjun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。