CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
FCNet: Stereo 3D Object Detection with Feature Correlation Networks
Wu, Yingyu1; Liu, Ziyan1,2,3; Chen, Yunlei1; Zheng, Xuhui1; Zhang, Qian1; Yang, Mo1; Tang, Guangming3
2022-08-01
发表期刊ENTROPY
卷号24期号:8页码:17
摘要Deep-learning techniques have significantly improved object detection performance, especially with binocular images in 3D scenarios. To supervise the depth information in stereo 3D object detection, reconstructing the 3D dense depth of LiDAR point clouds causes higher computational costs and lower inference speed. After exploring the intrinsic relationship between the implicit depth information and semantic texture features of the binocular images, we propose an efficient and accurate 3D object detection algorithm, FCNet, in stereo images. First, we construct a multi-scale cost-volume containing implicit depth information using the normalized dot-product by generating multi-scale feature maps from the input stereo images. Secondly, the variant attention model enhances its global and local description, and the sparse region monitors the depth loss deep regression. Thirdly, for balancing the channel information preservation of the re-fused left-right feature maps and computational burden, a reweighting strategy is employed to enhance the feature correlation in merging the last-layer features of binocular images. Extensive experiment results on the challenging KITTI benchmark demonstrate that the proposed algorithm achieves better performance, including a lower computational cost and higher inference speed in 3D object detection.
关键词3D object detection deep learning stereo matching multi-scale cost-volume channel similarity parallel convolutional attention
DOI10.3390/e24081121
收录类别SCI
语种英语
资助项目Guizhou Science and Technology Foundation[(2016) 1054] ; Guizhou Province Joint funding Project[LH (2017) 7226] ; Guizhou University Academic New Seeding training and Innovation and Exploration Project[(2017) 5788]
WOS研究方向Physics
WOS类目Physics, Multidisciplinary
WOS记录号WOS:000846029000001
出版者MDPI
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19449
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Ziyan
作者单位1.Guizhou Univ, Coll Big Data & Informat Engn, Guiyang 550025, Peoples R China
2.Guizhou Univ, State Key Lab Publ Big Data, Guiyang 550025, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wu, Yingyu,Liu, Ziyan,Chen, Yunlei,et al. FCNet: Stereo 3D Object Detection with Feature Correlation Networks[J]. ENTROPY,2022,24(8):17.
APA Wu, Yingyu.,Liu, Ziyan.,Chen, Yunlei.,Zheng, Xuhui.,Zhang, Qian.,...&Tang, Guangming.(2022).FCNet: Stereo 3D Object Detection with Feature Correlation Networks.ENTROPY,24(8),17.
MLA Wu, Yingyu,et al."FCNet: Stereo 3D Object Detection with Feature Correlation Networks".ENTROPY 24.8(2022):17.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Yingyu]的文章
[Liu, Ziyan]的文章
[Chen, Yunlei]的文章
百度学术
百度学术中相似的文章
[Wu, Yingyu]的文章
[Liu, Ziyan]的文章
[Chen, Yunlei]的文章
必应学术
必应学术中相似的文章
[Wu, Yingyu]的文章
[Liu, Ziyan]的文章
[Chen, Yunlei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。