Institute of Computing Technology, Chinese Academy IR
FCNet: Stereo 3D Object Detection with Feature Correlation Networks | |
Wu, Yingyu1; Liu, Ziyan1,2,3; Chen, Yunlei1; Zheng, Xuhui1; Zhang, Qian1; Yang, Mo1; Tang, Guangming3 | |
2022-08-01 | |
发表期刊 | ENTROPY |
卷号 | 24期号:8页码:17 |
摘要 | Deep-learning techniques have significantly improved object detection performance, especially with binocular images in 3D scenarios. To supervise the depth information in stereo 3D object detection, reconstructing the 3D dense depth of LiDAR point clouds causes higher computational costs and lower inference speed. After exploring the intrinsic relationship between the implicit depth information and semantic texture features of the binocular images, we propose an efficient and accurate 3D object detection algorithm, FCNet, in stereo images. First, we construct a multi-scale cost-volume containing implicit depth information using the normalized dot-product by generating multi-scale feature maps from the input stereo images. Secondly, the variant attention model enhances its global and local description, and the sparse region monitors the depth loss deep regression. Thirdly, for balancing the channel information preservation of the re-fused left-right feature maps and computational burden, a reweighting strategy is employed to enhance the feature correlation in merging the last-layer features of binocular images. Extensive experiment results on the challenging KITTI benchmark demonstrate that the proposed algorithm achieves better performance, including a lower computational cost and higher inference speed in 3D object detection. |
关键词 | 3D object detection deep learning stereo matching multi-scale cost-volume channel similarity parallel convolutional attention |
DOI | 10.3390/e24081121 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Guizhou Science and Technology Foundation[(2016) 1054] ; Guizhou Province Joint funding Project[LH (2017) 7226] ; Guizhou University Academic New Seeding training and Innovation and Exploration Project[(2017) 5788] |
WOS研究方向 | Physics |
WOS类目 | Physics, Multidisciplinary |
WOS记录号 | WOS:000846029000001 |
出版者 | MDPI |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/19449 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Liu, Ziyan |
作者单位 | 1.Guizhou Univ, Coll Big Data & Informat Engn, Guiyang 550025, Peoples R China 2.Guizhou Univ, State Key Lab Publ Big Data, Guiyang 550025, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Wu, Yingyu,Liu, Ziyan,Chen, Yunlei,et al. FCNet: Stereo 3D Object Detection with Feature Correlation Networks[J]. ENTROPY,2022,24(8):17. |
APA | Wu, Yingyu.,Liu, Ziyan.,Chen, Yunlei.,Zheng, Xuhui.,Zhang, Qian.,...&Tang, Guangming.(2022).FCNet: Stereo 3D Object Detection with Feature Correlation Networks.ENTROPY,24(8),17. |
MLA | Wu, Yingyu,et al."FCNet: Stereo 3D Object Detection with Feature Correlation Networks".ENTROPY 24.8(2022):17. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论