CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DHSA: efficient doubly homomorphic secure aggregation for cross-silo federated learning
Liu, Zizhen1; Chen, Si2; Ye, Jing1,3; Fan, Junfeng2; Li, Huawei1,3; Li, Xiaowei1,3
2022-08-24
发表期刊JOURNAL OF SUPERCOMPUTING
ISSN0920-8542
页码31
摘要Secure aggregation is widely used in horizontal federated learning (FL), to prevent the leakage of training data when model updates from data owners are aggregated. Secure aggregation protocols based on homomorphic encryption (HE) have been utilized in industrial cross-silo FL systems, one of the settings involved with privacy-sensitive organizations such as financial or medical, presenting more stringent requirements on privacy security. However, existing HE-based solutions have limitations in efficiency and security guarantees against colluding adversaries without a Trust Third Party. This paper proposes an efficient Doubly Homomorphic Secure Aggregation (DHSA) scheme for cross-silo FL, which utilizes multi-key homomorphic encryption (MKHE) and seed homomorphic pseudorandom generator (SHPRG) as cryptographic primitives. The application of MKHE provides strong security guarantees against up to N - 2 participates colluding with the aggregator, with no TTP required. To mitigate the large computation and communication cost of MKHE, we leverage the homomorphic property of SHPRG to replace the majority of MKHE computation by computationally friendly mask generation from SHPRG, while preserving the security. Overall, the resulting scheme satisfies the stringent security requirements of typical cross-silo FL scenarios, at the same time providing high computation and communication efficiency for practical usage. We experimentally demonstrate that our scheme brings a speedup to 20x over the state-of-the-art HE-based secure aggregation and reduces the traffic volume to approximately 1.5x inflation over the plain learning setting.
关键词Federated learning Security Efficient Homomorphic
DOI10.1007/s11227-022-04745-4
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2020YFB1600201] ; National Natural Science Foundation of China (NSFC)[U20A20202] ; National Natural Science Foundation of China (NSFC)[62090024] ; National Natural Science Foundation of China (NSFC)[61876173] ; Youth Innovation Promotion Association CAS
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000843969200001
出版者SPRINGER
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19435
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ye, Jing
作者单位1.Chinese Acad Sci, Inst Comp Technol, 6 Kexueyuan South Rd, Beijing 100190, Peoples R China
2.Open Secur Res, 18 Sci & Technol Rd, Shenzhen 518063, Peoples R China
3.CASTEST, 18 Zhongguancun Rd, Beijing 100083, Peoples R China
推荐引用方式
GB/T 7714
Liu, Zizhen,Chen, Si,Ye, Jing,et al. DHSA: efficient doubly homomorphic secure aggregation for cross-silo federated learning[J]. JOURNAL OF SUPERCOMPUTING,2022:31.
APA Liu, Zizhen,Chen, Si,Ye, Jing,Fan, Junfeng,Li, Huawei,&Li, Xiaowei.(2022).DHSA: efficient doubly homomorphic secure aggregation for cross-silo federated learning.JOURNAL OF SUPERCOMPUTING,31.
MLA Liu, Zizhen,et al."DHSA: efficient doubly homomorphic secure aggregation for cross-silo federated learning".JOURNAL OF SUPERCOMPUTING (2022):31.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Zizhen]的文章
[Chen, Si]的文章
[Ye, Jing]的文章
百度学术
百度学术中相似的文章
[Liu, Zizhen]的文章
[Chen, Si]的文章
[Ye, Jing]的文章
必应学术
必应学术中相似的文章
[Liu, Zizhen]的文章
[Chen, Si]的文章
[Ye, Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。