CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Decoupled R-CNN: Sensitivity-Specific Detector for Higher Accurate Localization
Wang, Dong1; Shang, Kun2; Wu, Huaming1; Wang, Ce3,4
2022-09-01
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
ISSN1051-8215
卷号32期号:9页码:6324-6336
摘要Object detection, as a fundamental problem in computer vision, has been widely used in many industrial applications, such as intelligent manufacturing and intelligent video surveillance. In this work, we find that classification and regression have different sensitivities to the object translation, from the investigation about the availability of highly overlapping proposals. More specifically, the regressor head has intrinsic characteristics of higher sensitivity to translation than the classifier. Based on it, we propose a decoupled sampling strategy for a deep detector, named Decoupled R-CNN, to decouple the proposals sampling for the two tasks, which induces two sensitivity-specific heads. Furthermore, we adopt the cascaded structure for the single regressor head of Decoupled R-CNN, which is an extremely simple but highly effective way of improving the performance of object detection. Extensive empirical analyses using real-world datasets demonstrate the value of the proposed method when compared with the state-of-the-art models. The reproducing code is available at https://github.com/shouwangzhe134/Decoupled-R-CNN.
关键词Proposals Detectors Task analysis Sensitivity Object detection Training Feature extraction Object detection R-CNN two-stage detection decoupled sampling strategy decoupled R-CNN
DOI10.1109/TCSVT.2022.3167114
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[12001180] ; National Natural Science Foundation of China[62071327] ; National Natural Science Foundation of China[61801325]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000849300000049
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:13[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19433
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shang, Kun
作者单位1.Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
2.Chinese Acad Sci, Res Ctr Med AI, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
4.Chinese Acad Sci, Suzhou Inst Intelligent Comp Technol, Suzhou 215123, Peoples R China
推荐引用方式
GB/T 7714
Wang, Dong,Shang, Kun,Wu, Huaming,et al. Decoupled R-CNN: Sensitivity-Specific Detector for Higher Accurate Localization[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2022,32(9):6324-6336.
APA Wang, Dong,Shang, Kun,Wu, Huaming,&Wang, Ce.(2022).Decoupled R-CNN: Sensitivity-Specific Detector for Higher Accurate Localization.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,32(9),6324-6336.
MLA Wang, Dong,et al."Decoupled R-CNN: Sensitivity-Specific Detector for Higher Accurate Localization".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 32.9(2022):6324-6336.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Dong]的文章
[Shang, Kun]的文章
[Wu, Huaming]的文章
百度学术
百度学术中相似的文章
[Wang, Dong]的文章
[Shang, Kun]的文章
[Wu, Huaming]的文章
必应学术
必应学术中相似的文章
[Wang, Dong]的文章
[Shang, Kun]的文章
[Wu, Huaming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。