CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Seq-SetNet: directly exploiting multiple sequence alignment for protein secondary structure prediction
Ju, Fusong1,2; Zhu, Jianwei3; Zhang, Qi1,2; Wei, Guozheng1,2; Sun, Shiwei1,2,4; Zheng, Wei-Mou2,5; Bu, Dongbo1,2,4
2022-02-15
发表期刊BIOINFORMATICS
ISSN1367-4803
卷号38期号:4页码:990-996
摘要Motivation: Accurate prediction of protein structure relies heavily on exploiting multiple sequence alignment (MSA) for residue mutations and correlations as this information specifies protein tertiary structure. The widely used prediction approaches usually transform MSA into inter-mediate models, say position-specific scoring matrix or profile hidden Markov model. These inter-mediate models, however, cannot fully represent residue mutations and correlations carried by MSA; hence, an effective way to directly exploit MSAs is highly desirable. Results: Here, we report a novel sequence set network (called Seq-SetNet) to directly and effectively exploit MSA for protein structure prediction. Seq-SetNet uses an `encoding and aggregation' strategy that consists of two key elements: (i) an encoding module that takes a component homologue in MSA as input, and encodes residue mutations and correlations into context-specific features for each residue; and (ii) an aggregation module to aggregate the features extracted from all component homologues, which are further transformed into structural properties for residues of the query protein. As Seq-SetNet encodes each homologue protein individually, it could consider both insertions and deletions, as well as long-distance correlations among residues, thus representing more information than the inter-mediate models. Moreover, the encoding module automatically learns effective features and thus avoids manual feature engineering. Using symmetric aggregation functions, Seq-SetNet processes the homologue proteins as a sequence set, making its prediction results invariable to the order of these proteins. On popular benchmark sets, we demonstrated the successful application of Seq-SetNet to predict secondary structure and torsion angles of residues with improved accuracy and efficiency.
DOI10.1093/bioinformatics/btab777
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2020YFA0907000] ; National Natural Science Foundation of China[62072435] ; National Natural Science Foundation of China[31770775] ; National Natural Science Foundation of China[82130055]
WOS研究方向Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics
WOS类目Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号WOS:000747962400015
出版者OXFORD UNIV PRESS
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19003
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Bu, Dongbo
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Microsoft Res Asia, Beijing 100080, Peoples R China
4.Zhongke Big Data Acad, Zhengzhou 450046, Henan, Peoples R China
5.Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Ju, Fusong,Zhu, Jianwei,Zhang, Qi,et al. Seq-SetNet: directly exploiting multiple sequence alignment for protein secondary structure prediction[J]. BIOINFORMATICS,2022,38(4):990-996.
APA Ju, Fusong.,Zhu, Jianwei.,Zhang, Qi.,Wei, Guozheng.,Sun, Shiwei.,...&Bu, Dongbo.(2022).Seq-SetNet: directly exploiting multiple sequence alignment for protein secondary structure prediction.BIOINFORMATICS,38(4),990-996.
MLA Ju, Fusong,et al."Seq-SetNet: directly exploiting multiple sequence alignment for protein secondary structure prediction".BIOINFORMATICS 38.4(2022):990-996.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ju, Fusong]的文章
[Zhu, Jianwei]的文章
[Zhang, Qi]的文章
百度学术
百度学术中相似的文章
[Ju, Fusong]的文章
[Zhu, Jianwei]的文章
[Zhang, Qi]的文章
必应学术
必应学术中相似的文章
[Ju, Fusong]的文章
[Zhu, Jianwei]的文章
[Zhang, Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。