CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Adaptively sharing multi-levels of distributed representations in multi-task learning
Wang, Tianxin1,2; Zhuang, Fuzhen3,4; Sun, Ying1,2; Zhang, Xiangliang5; Lin, Leyu6; Xia, Feng6; He, Lei6; He, Qing1,2
2022-04-01
发表期刊INFORMATION SCIENCES
ISSN0020-0255
卷号591页码:226-234
摘要In multi-task learning, the performance is often sensitive to the relationships between tasks. Thus it is important to study how to exploit the complex relationships across different tasks. One line of research captures the complex task relationships, by increasing the model capacity and thus requiring a large training dataset. However in many real-world applications, the amount of labeled data is limited. In this paper, we propose a light weight and specially designed architecture, which aims to model task relationships for small or middle-sized datasets. The proposed framework learns a task-specific ensemble of subnetworks in different depths, and is able to adapt the model architecture for the given data. The task-specific ensemble parameters are learned simultaneously with the weights of the network by optimizing a single loss function defined with respect to the end task. The hierarchical model structure is able to share both general and specific distributed representations to capture the inherent relationships between tasks. We validate our approach on various types of tasks, including synthetic task, article recommendation task and vision task. The results demonstrate the advantages of our model over several competitive baselines especially when the tasks are less-related.(c) 2022 Published by Elsevier Inc.
关键词Multi-task learning Deep learning Machine learning
DOI10.1016/j.ins.2022.01.035
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2021ZD0113602] ; National Natural Science Foundation of China[62176014] ; National Natural Science Foundation of China[U1836206] ; National Natural Science Foundation of China[U1811461]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000770687400012
出版者ELSEVIER SCIENCE INC
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18943
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhuang, Fuzhen
作者单位1.Chinese Acad Sci, CAS, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Beihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
4.Beihang Univ, Sch Comp Sci, SKLSDE, Beijing 100191, Peoples R China
5.Univ Notre Dame, Comp Sci & Engn, Notre Dame, IN 46556 USA
6.Tencent, WeChat Grp, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Wang, Tianxin,Zhuang, Fuzhen,Sun, Ying,et al. Adaptively sharing multi-levels of distributed representations in multi-task learning[J]. INFORMATION SCIENCES,2022,591:226-234.
APA Wang, Tianxin.,Zhuang, Fuzhen.,Sun, Ying.,Zhang, Xiangliang.,Lin, Leyu.,...&He, Qing.(2022).Adaptively sharing multi-levels of distributed representations in multi-task learning.INFORMATION SCIENCES,591,226-234.
MLA Wang, Tianxin,et al."Adaptively sharing multi-levels of distributed representations in multi-task learning".INFORMATION SCIENCES 591(2022):226-234.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Tianxin]的文章
[Zhuang, Fuzhen]的文章
[Sun, Ying]的文章
百度学术
百度学术中相似的文章
[Wang, Tianxin]的文章
[Zhuang, Fuzhen]的文章
[Sun, Ying]的文章
必应学术
必应学术中相似的文章
[Wang, Tianxin]的文章
[Zhuang, Fuzhen]的文章
[Sun, Ying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。