CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Ultrathin Eardrum-Inspired Self-Powered Acoustic Sensor for Vocal Synchronization Recognition with the Assistance of Machine Learning
Jiang, Yang1,2; Zhang, Yufei1,2; Ning, Chuan1,2; Ji, Qingqing3; Peng, Xiao1,2; Dong, Kai1,2; Wang, Zhong Lin1,2,4,5
2022-04-01
发表期刊SMALL
ISSN1613-6810
卷号18期号:13页码:9
摘要With the rapid development of human-machine interfaces, artificial acoustic sensors play an important role in the hearing impaired. Here, an ultrathin eardrum-like triboelectric acoustic sensor (ETAS) is presented consisting of silver-coated nanofibers, whose thickness is only 40 mu m. The sensitivity and frequency response range of the ETAS are closely related to the geometric parameters. The ETAS endows a high sensitivity of 228.5 mV Pa-1 at 95 dB, and the ETAS has a broad frequency response ranging from 20 to 5000 Hz, which can be tuned by adjusting the thickness, size, or shape of the sensor. Cooperating with artificial intelligence (AI) algorithms, the ETAS can achieve real-time voice conversion with a high identification accuracy of 92.64%. Under good working property and the AI system, the ETAS simplifies signal processing and reduces the power consumption. This work presents a strategy for self-power auditory systems, which can greatly accelerate the miniaturization of self-powered systems used in wearable electronics, augmented reality, virtual reality, and control hubs for automation.
关键词acoustic sensors machine learning self-powered sensors triboelectric nanogenerators voice recognition
DOI10.1002/smll.202106960
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[22109012] ; Natural Science Foundation of Beijing Municipality[2212052] ; Fundamental Research Funds for the Central Universities[E1E46805]
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号WOS:000751371900001
出版者WILEY-V C H VERLAG GMBH
引用统计
被引频次:60[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18867
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Dong, Kai; Wang, Zhong Lin
作者单位1.Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
2.Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
3.Univ Chinese Acad Sci, Chinese Acad Sci, Inst Comp Technol, Beijing 100049, Peoples R China
4.CUSTech Inst Technol, Wenzhou 325024, Zhejiang, Peoples R China
5.Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
推荐引用方式
GB/T 7714
Jiang, Yang,Zhang, Yufei,Ning, Chuan,et al. Ultrathin Eardrum-Inspired Self-Powered Acoustic Sensor for Vocal Synchronization Recognition with the Assistance of Machine Learning[J]. SMALL,2022,18(13):9.
APA Jiang, Yang.,Zhang, Yufei.,Ning, Chuan.,Ji, Qingqing.,Peng, Xiao.,...&Wang, Zhong Lin.(2022).Ultrathin Eardrum-Inspired Self-Powered Acoustic Sensor for Vocal Synchronization Recognition with the Assistance of Machine Learning.SMALL,18(13),9.
MLA Jiang, Yang,et al."Ultrathin Eardrum-Inspired Self-Powered Acoustic Sensor for Vocal Synchronization Recognition with the Assistance of Machine Learning".SMALL 18.13(2022):9.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jiang, Yang]的文章
[Zhang, Yufei]的文章
[Ning, Chuan]的文章
百度学术
百度学术中相似的文章
[Jiang, Yang]的文章
[Zhang, Yufei]的文章
[Ning, Chuan]的文章
必应学术
必应学术中相似的文章
[Jiang, Yang]的文章
[Zhang, Yufei]的文章
[Ning, Chuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。