CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DuDoDR-Net: Dual-domain data consistent recurrent network for simultaneous sparse view and metal artifact reduction in computed tomography
Zhou, Bo1; Chen, Xiongchao1; Zhou, S. Kevin4,5,6; Duncan, James S.1,2,3; Liu, Chi1,2
2022
发表期刊MEDICAL IMAGE ANALYSIS
ISSN1361-8415
卷号75页码:10
摘要Sparse-view computed tomography (SVCT) aims to reconstruct a cross-sectional image using a reduced number of x-ray projections. While SVCT can efficiently reduce the radiation dose, the reconstruction suffers from severe streak artifacts, and the artifacts are further amplified with the presence of metallic implants, which could adversely impact the medical diagnosis and other downstream applications. Previous methods have extensively explored either SVCT reconstruction without metallic implants, or full-view CT metal artifact reduction (MAR). The issue of simultaneous sparse-view and metal artifact reduction (SVMAR) remains under-explored, and it is infeasible to directly apply previous SVCT and MAR methods to SVMAR which may yield non-ideal reconstruction quality. In this work, we propose a dual-domain data consistent recurrent network, called DuDoDR-Net, for SVMAR. Our DuDoDR-Net aims to reconstruct an artifact-free image by recurrent image domain and sinogram domain restorations. To ensure the metal free part of acquired projection data is preserved, we also develop the image data consistent layer (iDCL) and sinogram data consistent layer (sDCL) that are interleaved in our recurrent framework. Our experimental results demonstrate that our DuDoDR-Net is able to produce superior artifact-reduced results while preserving the anatomical structures, that outperforming previous SVCT and SVMAR methods, under different sparse-view acquisition settings. (c) 2021 Elsevier B.V. All rights reserved.
关键词Sparse view Metal artifact Computed tomography Recurrent network Dual-domain network Data consistency
DOI10.1016/j.media.2021.102289
收录类别SCI
语种英语
资助项目National Institutes of Health (NIH)[R01EB025468]
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000718407400005
出版者ELSEVIER
引用统计
被引频次:50[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18108
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Chi
作者单位1.Yale Univ, Dept Biomed Engn, New Haven, CT 06520 USA
2.Yale Sch Med, Dept Radiol & Biomed Imaging, New Haven, CT USA
3.Yale Univ, Dept Elect Engn, New Haven, CT USA
4.Univ Sci & Technol China, Sch Biomed Engn, Suzhou, Peoples R China
5.Univ Sci & Technol China, Suzhou Inst Adv Res, Suzhou, Peoples R China
6.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Bo,Chen, Xiongchao,Zhou, S. Kevin,et al. DuDoDR-Net: Dual-domain data consistent recurrent network for simultaneous sparse view and metal artifact reduction in computed tomography[J]. MEDICAL IMAGE ANALYSIS,2022,75:10.
APA Zhou, Bo,Chen, Xiongchao,Zhou, S. Kevin,Duncan, James S.,&Liu, Chi.(2022).DuDoDR-Net: Dual-domain data consistent recurrent network for simultaneous sparse view and metal artifact reduction in computed tomography.MEDICAL IMAGE ANALYSIS,75,10.
MLA Zhou, Bo,et al."DuDoDR-Net: Dual-domain data consistent recurrent network for simultaneous sparse view and metal artifact reduction in computed tomography".MEDICAL IMAGE ANALYSIS 75(2022):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Bo]的文章
[Chen, Xiongchao]的文章
[Zhou, S. Kevin]的文章
百度学术
百度学术中相似的文章
[Zhou, Bo]的文章
[Chen, Xiongchao]的文章
[Zhou, S. Kevin]的文章
必应学术
必应学术中相似的文章
[Zhou, Bo]的文章
[Chen, Xiongchao]的文章
[Zhou, S. Kevin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。