CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
PEFS: AI-Driven Prediction Based Energy-Aware Fault-Tolerant Scheduling Scheme for Cloud Data Center
Marahatta, Avinab1,2; Xin, Qin3; Chi, Ce1,2; Zhang, Fa2; Liu, Zhiyong2
2021-10-01
发表期刊IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING
ISSN2377-3782
卷号6期号:4页码:655-666
摘要Cloud data centers (CDCs) have become increasingly popular and widespread in recent years with the growing popularity of cloud computing and high-performance computing. Due to the multi-step computation of data streams and heterogeneous task dependencies, task failure frequently occurs, resulting in poor user experience and additional energy consumption. To reduce task execution failure as well as energy consumption, we propose a novel AI-driven energy-aware proactive fault-tolerant scheduling scheme for CDCs in this paper. First, a prediction model based on the machine learning approach is trained to classify the arriving tasks into "failure-prone tasks" and "non-failure-prone tasks" according to the predicted failure rate. Then, two efficient scheduling mechanisms are proposed to allocate two types of tasks to the most appropriate hosts in a CDC. The vector reconstruction method is developed to construct super tasks from failure-prone tasks and separately schedule these super tasks and non-failure-prone tasks to the most suitable physical host. All the tasks are scheduled in an earliest-deadline-first manner. Our evaluation results show that the proposed scheme can intelligently predict task failure and achieves better fault tolerance and reduces total energy consumption better than the existing schemes.
关键词Energy efficiency Deep learning Fault tolerant systems Energy consumption Scheduling Cloud computing Predictive models Neural networks Cloud computing cloud data center scheduling fault-tolerance energy-efficiency task failure prediction deep neural network
DOI10.1109/TSUSC.2020.3015559
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61520106005] ; National Natural Science Foundation of China[61761136014] ; National Key Research and Development Program of China[2017YFB1010001] ; CAS-TWAS President's Fellowship
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Information Systems ; Telecommunications
WOS记录号WOS:000728136400010
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:20[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18049
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Marahatta, Avinab
作者单位1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
2.Chinese Acad Sci, High Performance Comp Res Ctr, Inst Comp Technol, Beijing 100190, Peoples R China
3.Univ Faroe Isl, FR-100 Torshavn, Faroe Islands
推荐引用方式
GB/T 7714
Marahatta, Avinab,Xin, Qin,Chi, Ce,et al. PEFS: AI-Driven Prediction Based Energy-Aware Fault-Tolerant Scheduling Scheme for Cloud Data Center[J]. IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING,2021,6(4):655-666.
APA Marahatta, Avinab,Xin, Qin,Chi, Ce,Zhang, Fa,&Liu, Zhiyong.(2021).PEFS: AI-Driven Prediction Based Energy-Aware Fault-Tolerant Scheduling Scheme for Cloud Data Center.IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING,6(4),655-666.
MLA Marahatta, Avinab,et al."PEFS: AI-Driven Prediction Based Energy-Aware Fault-Tolerant Scheduling Scheme for Cloud Data Center".IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 6.4(2021):655-666.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Marahatta, Avinab]的文章
[Xin, Qin]的文章
[Chi, Ce]的文章
百度学术
百度学术中相似的文章
[Marahatta, Avinab]的文章
[Xin, Qin]的文章
[Chi, Ce]的文章
必应学术
必应学术中相似的文章
[Marahatta, Avinab]的文章
[Xin, Qin]的文章
[Chi, Ce]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。